Spaces:
Configuration error
Configuration error
Upload test.py
Browse files
test.py
ADDED
|
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# test.py — Agentic logic using OpenAI + MCP tools (langchain_core for parsing)
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
from typing import Any, Dict, Optional, List, Literal, Type
|
| 7 |
+
|
| 8 |
+
from pydantic import BaseModel, ValidationError
|
| 9 |
+
from openai import OpenAI
|
| 10 |
+
from langchain_core.output_parsers import PydanticOutputParser # ← requested parser
|
| 11 |
+
|
| 12 |
+
# -------------------- OpenAI setup --------------------
|
| 13 |
+
OAI_MODEL = os.getenv("OAI_MODEL", "gpt-4o-mini")
|
| 14 |
+
client_oai = OpenAI(api_key="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")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _format_history_for_context(
|
| 18 |
+
conversation: List[Dict[str, str]],
|
| 19 |
+
max_turns: int = 8
|
| 20 |
+
) -> str:
|
| 21 |
+
"""
|
| 22 |
+
Convert the last N messages from the session into a compact context string.
|
| 23 |
+
Expected item format: {"role": "user"|"assistant", "content": "..."}.
|
| 24 |
+
"""
|
| 25 |
+
if not conversation:
|
| 26 |
+
return ""
|
| 27 |
+
window = conversation[-max_turns:]
|
| 28 |
+
lines = []
|
| 29 |
+
for m in window:
|
| 30 |
+
role = m.get("role", "user")
|
| 31 |
+
content = m.get("content", "").strip()
|
| 32 |
+
if not content:
|
| 33 |
+
continue
|
| 34 |
+
if role == "user":
|
| 35 |
+
lines.append(f"User: {content}")
|
| 36 |
+
else:
|
| 37 |
+
lines.append(f"Assistant: {content}")
|
| 38 |
+
return "\n".join(lines)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def llm_invoke(
|
| 43 |
+
prompt: str,
|
| 44 |
+
system: str = "You are a helpful assistant. Return JSON when requested.",
|
| 45 |
+
temperature: float = 0.0,
|
| 46 |
+
) -> str:
|
| 47 |
+
"""
|
| 48 |
+
Invoke OpenAI Chat Completions for planning/intent classification (low temperature).
|
| 49 |
+
"""
|
| 50 |
+
resp = client_oai.chat.completions.create(
|
| 51 |
+
model=OAI_MODEL,
|
| 52 |
+
messages=[
|
| 53 |
+
{"role": "system", "content": system},
|
| 54 |
+
{"role": "user", "content": prompt},
|
| 55 |
+
],
|
| 56 |
+
temperature=temperature,
|
| 57 |
+
)
|
| 58 |
+
return resp.choices[0].message.content
|
| 59 |
+
|
| 60 |
+
# -------------------- Pydantic models --------------------
|
| 61 |
+
class IntentSpec(BaseModel):
|
| 62 |
+
in_scope: bool
|
| 63 |
+
intent: Literal["in_scope", "out_of_scope", "chit_chat"]
|
| 64 |
+
reason: Optional[str] = None
|
| 65 |
+
|
| 66 |
+
class SubQuery(BaseModel):
|
| 67 |
+
id: str
|
| 68 |
+
query: str
|
| 69 |
+
tool_name: Literal["ask_excel", "ask_pdf", "ask_link"]
|
| 70 |
+
required_params: Dict[str, Any]
|
| 71 |
+
depends_on: List[str] = []
|
| 72 |
+
|
| 73 |
+
class PlanResponse(BaseModel):
|
| 74 |
+
subqueries: List[SubQuery]
|
| 75 |
+
|
| 76 |
+
class ContextEnhancer(BaseModel):
|
| 77 |
+
answer_found: bool
|
| 78 |
+
needs_enhancement: bool
|
| 79 |
+
enhanced_query: Optional[str] = None
|
| 80 |
+
cached_answer: Optional[str] = None
|
| 81 |
+
reason: Optional[str] = None
|
| 82 |
+
|
| 83 |
+
# -------------------- JSON parsing via langchain_core --------------------
|
| 84 |
+
def _safe_json(text: str) -> str:
|
| 85 |
+
"""
|
| 86 |
+
Heuristic sanitizer: strip code fences and extract the main JSON block
|
| 87 |
+
to help PydanticOutputParser if the model adds extra text.
|
| 88 |
+
"""
|
| 89 |
+
t = text.strip()
|
| 90 |
+
if t.startswith("```"):
|
| 91 |
+
# Remove triple backtick fences; allow optional 'json' hint
|
| 92 |
+
t = t.strip("`").strip()
|
| 93 |
+
if t.lower().startswith("json"):
|
| 94 |
+
t = t[4:].strip()
|
| 95 |
+
# Try direct JSON
|
| 96 |
+
try:
|
| 97 |
+
json.loads(t)
|
| 98 |
+
return t
|
| 99 |
+
except Exception:
|
| 100 |
+
pass
|
| 101 |
+
# Fallback: find first '{' and last '}'
|
| 102 |
+
start = t.find("{")
|
| 103 |
+
end = t.rfind("}")
|
| 104 |
+
if start != -1 and end != -1 and end > start:
|
| 105 |
+
return t[start : end + 1]
|
| 106 |
+
return text
|
| 107 |
+
|
| 108 |
+
def parse_response(text: str, model_spec: Type[BaseModel]) -> BaseModel:
|
| 109 |
+
"""
|
| 110 |
+
Parse into a Pydantic model using langchain_core's PydanticOutputParser,
|
| 111 |
+
with a robust fallback to standard json+pydantic if needed.
|
| 112 |
+
"""
|
| 113 |
+
parser = PydanticOutputParser(pydantic_object=model_spec)
|
| 114 |
+
# First try parser.parse() directly
|
| 115 |
+
try:
|
| 116 |
+
return parser.parse(text)
|
| 117 |
+
except Exception:
|
| 118 |
+
pass
|
| 119 |
+
# Fallback: sanitize and try again
|
| 120 |
+
try:
|
| 121 |
+
return parser.parse(_safe_json(text))
|
| 122 |
+
except Exception:
|
| 123 |
+
# Last fallback: manual pydantic construction
|
| 124 |
+
data = json.loads(_safe_json(text))
|
| 125 |
+
return model_spec(**data)
|
| 126 |
+
|
| 127 |
+
# -------------------- Prompts (intent + planning) --------------------
|
| 128 |
+
|
| 129 |
+
'''
|
| 130 |
+
def intent_prompt(query: str, available_iits: List = [], available_branches: List = [], years: List = []) -> str:
|
| 131 |
+
parser = PydanticOutputParser(pydantic_object=IntentSpec)
|
| 132 |
+
fmt = parser.get_format_instructions() # <- tells the LLM the exact JSON keys/types
|
| 133 |
+
|
| 134 |
+
return f"""You are an intent classifier for a JOSAA Counseling Assistant.
|
| 135 |
+
|
| 136 |
+
Supported IITs: {', '.join(available_iits)}
|
| 137 |
+
Supported Branches: {', '.join(available_branches)}
|
| 138 |
+
Available Data: opening/closing ranks ({', '.join(years)}), curriculum, NIRF, placements/faculty/research/facilities.
|
| 139 |
+
|
| 140 |
+
Classify the user's message into EXACTLY ONE of:
|
| 141 |
+
- "chit_chat"
|
| 142 |
+
- "in_scope"
|
| 143 |
+
- "out_of_scope"
|
| 144 |
+
|
| 145 |
+
Rules:
|
| 146 |
+
- "chit_chat" for greetings/small talk (hi/hello/how are you/what can you do).
|
| 147 |
+
- "in_scope" for queries about SUPPORTED IITs/branches, counseling, ranks/cutoffs, courses, curriculum, NIRF, placements, faculty, research, alumni/distinguished alumni and campus facilities.
|
| 148 |
+
- "out_of_scope" otherwise.
|
| 149 |
+
|
| 150 |
+
Return ONLY a JSON object following these instructions:
|
| 151 |
+
{fmt}
|
| 152 |
+
|
| 153 |
+
User query: "{query}"
|
| 154 |
+
""".strip()
|
| 155 |
+
'''
|
| 156 |
+
|
| 157 |
+
def intent_prompt(
|
| 158 |
+
query: str,
|
| 159 |
+
available_iits: List = [],
|
| 160 |
+
available_branches: List = [],
|
| 161 |
+
years: List = [],
|
| 162 |
+
conversation_context: str = "" # NEW
|
| 163 |
+
) -> str:
|
| 164 |
+
parser = PydanticOutputParser(pydantic_object=IntentSpec)
|
| 165 |
+
fmt = parser.get_format_instructions()
|
| 166 |
+
|
| 167 |
+
convo = f"\n\nRecent conversation:\n{conversation_context}\n\n" if conversation_context else "\n\n"
|
| 168 |
+
return f"""You are an intent classifier for a JOSAA Counseling Assistant.
|
| 169 |
+
|
| 170 |
+
Supported IITs: {', '.join(available_iits)}
|
| 171 |
+
Supported Branches: {', '.join(available_branches)}
|
| 172 |
+
Available Data: opening/closing ranks ({', '.join(years)}), curriculum, NIRF, placements/faculty/research/facilities.{convo}
|
| 173 |
+
Classify the user's message into EXACTLY ONE of:
|
| 174 |
+
- "chit_chat"
|
| 175 |
+
- "in_scope"
|
| 176 |
+
- "out_of_scope"
|
| 177 |
+
|
| 178 |
+
Rules:
|
| 179 |
+
- "chit_chat" for greetings/small talk (hi/hello/how are you/what can you do).
|
| 180 |
+
- "in_scope" for queries about SUPPORTED IITs/branches, counseling, ranks/cutoffs, courses, curriculum, NIRF, placements, faculty, research, alumni/distinguished alumni and campus facilities.
|
| 181 |
+
- "out_of_scope" otherwise.
|
| 182 |
+
|
| 183 |
+
Return ONLY a JSON object following these instructions:
|
| 184 |
+
{fmt}
|
| 185 |
+
|
| 186 |
+
User query: "{query}"
|
| 187 |
+
""".strip()
|
| 188 |
+
|
| 189 |
+
'''
|
| 190 |
+
def planning_prompt(query: str, available_iits: List = [], available_branches: List = [], years: List = []) -> str:
|
| 191 |
+
parser = PydanticOutputParser(pydantic_object=PlanResponse)
|
| 192 |
+
fmt = parser.get_format_instructions()
|
| 193 |
+
return f"""You are a query planner for a JEE counseling assistant.
|
| 194 |
+
|
| 195 |
+
AVAILABLE TOOLS:
|
| 196 |
+
- ask_excel — ranks/cutoffs; params may include iit_name, branch, year
|
| 197 |
+
- ask_pdf — curriculum/NIRF; params may include iit_name, branch
|
| 198 |
+
- ask_link — placements/faculty/research/facilities; params may include iit_name, branch, or a URL
|
| 199 |
+
|
| 200 |
+
Break the user query into specific subqueries targeting ONE tool each.
|
| 201 |
+
Use ONLY supported IIT names and branch names when present.
|
| 202 |
+
|
| 203 |
+
Return ONLY a JSON object following these instructions:
|
| 204 |
+
{fmt}
|
| 205 |
+
|
| 206 |
+
User Query: "{query}"
|
| 207 |
+
""".strip()
|
| 208 |
+
'''
|
| 209 |
+
|
| 210 |
+
def planning_prompt(
|
| 211 |
+
query: str,
|
| 212 |
+
available_iits: List = [],
|
| 213 |
+
available_branches: List = [],
|
| 214 |
+
years: List = [],
|
| 215 |
+
conversation_context: str = "" # NEW
|
| 216 |
+
) -> str:
|
| 217 |
+
parser = PydanticOutputParser(pydantic_object=PlanResponse)
|
| 218 |
+
fmt = parser.get_format_instructions()
|
| 219 |
+
|
| 220 |
+
convo = f"\n\nRecent conversation:\n{conversation_context}\n\n" if conversation_context else "\n\n"
|
| 221 |
+
return f"""You are a query planner for a JEE counseling assistant.
|
| 222 |
+
|
| 223 |
+
AVAILABLE TOOLS:
|
| 224 |
+
- ask_excel — ranks/cutoffs
|
| 225 |
+
- ask_pdf — curriculum/NIRF
|
| 226 |
+
- ask_link — placements/faculty/research/facilities{convo}
|
| 227 |
+
Break the user query into specific subqueries targeting ONE tool each.
|
| 228 |
+
|
| 229 |
+
Return ONLY a JSON object following these instructions:
|
| 230 |
+
{fmt}
|
| 231 |
+
|
| 232 |
+
User Query: "{query}"
|
| 233 |
+
""".strip()
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# -------------------- Intent detection & planning --------------------
|
| 237 |
+
'''
|
| 238 |
+
def intent_detect(user_q: str, available_iits: List, available_branches: List, years: List) -> IntentSpec:
|
| 239 |
+
response = llm_invoke(intent_prompt(user_q, available_iits, available_branches, years), temperature=0.0)
|
| 240 |
+
print("intent is", f"{response}")
|
| 241 |
+
try:
|
| 242 |
+
return parse_response(response, IntentSpec)
|
| 243 |
+
except Exception as e:
|
| 244 |
+
# default to out_of_scope if parsing fails
|
| 245 |
+
return IntentSpec(in_scope=False, intent="out_of_scope", reason=f"Parse error: {e}")
|
| 246 |
+
'''
|
| 247 |
+
|
| 248 |
+
def intent_detect(
|
| 249 |
+
user_q: str,
|
| 250 |
+
available_iits: List,
|
| 251 |
+
available_branches: List,
|
| 252 |
+
years: List,
|
| 253 |
+
conversation_context: str # NEW
|
| 254 |
+
) -> IntentSpec:
|
| 255 |
+
response = llm_invoke(
|
| 256 |
+
intent_prompt(user_q, available_iits, available_branches, years, conversation_context),
|
| 257 |
+
temperature=0.0
|
| 258 |
+
)
|
| 259 |
+
return parse_response(response, IntentSpec)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
'''
|
| 263 |
+
def make_query_plan(user_q: str, available_iits: List, available_branches: List, years: List) -> PlanResponse:
|
| 264 |
+
response = llm_invoke(planning_prompt(user_q, available_iits, available_branches, years), temperature=0.0)
|
| 265 |
+
return parse_response(response, PlanResponse)
|
| 266 |
+
'''
|
| 267 |
+
|
| 268 |
+
def make_query_plan(
|
| 269 |
+
user_q: str,
|
| 270 |
+
available_iits: List,
|
| 271 |
+
available_branches: List,
|
| 272 |
+
years: List,
|
| 273 |
+
conversation_context: str # NEW
|
| 274 |
+
) -> PlanResponse:
|
| 275 |
+
response = llm_invoke(
|
| 276 |
+
planning_prompt(user_q, available_iits, available_branches, years, conversation_context),
|
| 277 |
+
temperature=0.0
|
| 278 |
+
)
|
| 279 |
+
return parse_response(response, PlanResponse)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# -------------------- MCP tool registry (real calls) --------------------
|
| 283 |
+
def _build_query_text(query: str, params: Dict[str, Any]) -> str:
|
| 284 |
+
"""Compose a single question string using the planner's params and description."""
|
| 285 |
+
if not params:
|
| 286 |
+
return query
|
| 287 |
+
param_str = "; ".join(f"{k}: {v}" for k, v in params.items())
|
| 288 |
+
return f"{query}\nParameters: {param_str}"
|
| 289 |
+
|
| 290 |
+
'''
|
| 291 |
+
def make_tool_registry(mcp_client) -> Dict[str, Any]:
|
| 292 |
+
"""
|
| 293 |
+
Return callables that invoke actual MCP tools via your client.
|
| 294 |
+
"""
|
| 295 |
+
def call_ask_excel(query: str, required_params: Dict[str, Any], temperature: float = 0.1, top_k: int = 5) -> str:
|
| 296 |
+
q_text = _build_query_text(query, required_params)
|
| 297 |
+
return mcp_client.ask_excel(
|
| 298 |
+
question=q_text,
|
| 299 |
+
top_k=top_k,
|
| 300 |
+
sheet=required_params.get("sheet", 0),
|
| 301 |
+
temperature=temperature,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
def call_ask_pdf(query: str, required_params: Dict[str, Any], temperature: float = 0.1, top_k: int = 5) -> str:
|
| 305 |
+
q_text = _build_query_text(query, required_params)
|
| 306 |
+
return mcp_client.ask_pdf(
|
| 307 |
+
question=q_text,
|
| 308 |
+
top_k=top_k,
|
| 309 |
+
temperature=temperature,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
def call_ask_link(query: str, required_params: Dict[str, Any], temperature: float = 0.1, top_k: int = 5) -> str:
|
| 313 |
+
q_text = _build_query_text(query, required_params)
|
| 314 |
+
return mcp_client.ask_link(
|
| 315 |
+
question=q_text,
|
| 316 |
+
temperature=temperature,
|
| 317 |
+
subquery_context=required_params.get("subquery_context"),
|
| 318 |
+
top_k=top_k,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
return {
|
| 322 |
+
"ask_excel": call_ask_excel,
|
| 323 |
+
"ask_pdf": call_ask_pdf,
|
| 324 |
+
"ask_link": call_ask_link,
|
| 325 |
+
}
|
| 326 |
+
'''
|
| 327 |
+
|
| 328 |
+
# AFTER (CHANGE):
|
| 329 |
+
def make_tool_registry(mcp_client, conversation_context: str) -> Dict[str, Any]:
|
| 330 |
+
def _build_query_text(query: str, params: Dict[str, Any], conversation_context: str) -> str:
|
| 331 |
+
parts = [query.strip()]
|
| 332 |
+
if params:
|
| 333 |
+
parts.append("Parameters: " + "; ".join(f"{k}: {v}" for k, v in params.items()))
|
| 334 |
+
if conversation_context:
|
| 335 |
+
parts.append("Conversation context:\n" + conversation_context)
|
| 336 |
+
return "\n".join(parts)
|
| 337 |
+
|
| 338 |
+
def call_ask_excel(query, required_params, temperature=0.1, top_k=5):
|
| 339 |
+
q_text = _build_query_text(query, required_params, conversation_context)
|
| 340 |
+
return mcp_client.ask_excel(question=q_text, top_k=top_k, sheet=required_params.get("sheet", 0), temperature=temperature)
|
| 341 |
+
|
| 342 |
+
def call_ask_pdf(query, required_params, temperature=0.1, top_k=5):
|
| 343 |
+
q_text = _build_query_text(query, required_params, conversation_context)
|
| 344 |
+
return mcp_client.ask_pdf(question=q_text, top_k=top_k, temperature=temperature)
|
| 345 |
+
|
| 346 |
+
def call_ask_link(query, required_params, temperature=0.1, top_k=5):
|
| 347 |
+
q_text = _build_query_text(query, required_params, "") # put convo in subquery_context instead
|
| 348 |
+
subctx = conversation_context if conversation_context else required_params.get("subquery_context")
|
| 349 |
+
# IMPORTANT: align param name with your server (query vs question)
|
| 350 |
+
return mcp_client.ask_link(
|
| 351 |
+
query=q_text, # if server expects 'query'; use question=q_text otherwise
|
| 352 |
+
temperature=temperature,
|
| 353 |
+
subquery_context=subctx,
|
| 354 |
+
top_k=top_k,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
return {"ask_excel": call_ask_excel, "ask_pdf": call_ask_pdf, "ask_link": call_ask_link}
|
| 358 |
+
|
| 359 |
+
# -------------------- Execute subqueries & synthesize final --------------------
|
| 360 |
+
def build_execution_order(subqueries: List[SubQuery]) -> List[List[str]]:
|
| 361 |
+
"""
|
| 362 |
+
Create batches of IDs whose dependencies are satisfied (simple topological batching).
|
| 363 |
+
"""
|
| 364 |
+
if not subqueries:
|
| 365 |
+
return []
|
| 366 |
+
remaining = {sq.id: sq for sq in subqueries}
|
| 367 |
+
completed = set()
|
| 368 |
+
order: List[List[str]] = []
|
| 369 |
+
while remaining:
|
| 370 |
+
ready = [sq_id for sq_id, sq in remaining.items() if all(dep in completed for dep in sq.depends_on)]
|
| 371 |
+
if not ready:
|
| 372 |
+
raise ValueError(f"Circular or unsatisfiable dependencies: {list(remaining.keys())}")
|
| 373 |
+
order.append(ready)
|
| 374 |
+
for sq_id in ready:
|
| 375 |
+
completed.add(sq_id)
|
| 376 |
+
del remaining[sq_id]
|
| 377 |
+
return order
|
| 378 |
+
|
| 379 |
+
#def execute_plan(
|
| 380 |
+
# user_q: str,
|
| 381 |
+
# plan: PlanResponse,
|
| 382 |
+
# mcp_client,
|
| 383 |
+
# temperature: float = 0.1,
|
| 384 |
+
# top_k: int = 5
|
| 385 |
+
#) -> Dict[str, Any]:
|
| 386 |
+
# """
|
| 387 |
+
# Execute subqueries in batches; returns a dict of {sq_id: {tool, answer}}.
|
| 388 |
+
# """
|
| 389 |
+
# registry = make_tool_registry(mcp_client)
|
| 390 |
+
|
| 391 |
+
def execute_plan(user_q, plan, mcp_client, conversation_context: str, temperature=0.1, top_k=5):
|
| 392 |
+
registry = make_tool_registry(mcp_client, conversation_context)
|
| 393 |
+
subqs = plan.subqueries
|
| 394 |
+
exec_order = build_execution_order(subqs)
|
| 395 |
+
results: Dict[str, Any] = {}
|
| 396 |
+
|
| 397 |
+
for batch in exec_order:
|
| 398 |
+
for sq_id in batch:
|
| 399 |
+
sq = next(s for s in subqs if s.id == sq_id)
|
| 400 |
+
tool_fn = registry.get(sq.tool_name)
|
| 401 |
+
if not tool_fn:
|
| 402 |
+
results[sq_id] = {"tool": sq.tool_name, "answer": f"❌ Unknown tool '{sq.tool_name}'"}
|
| 403 |
+
continue
|
| 404 |
+
try:
|
| 405 |
+
ans = tool_fn(sq.query, sq.required_params, temperature=temperature, top_k=top_k)
|
| 406 |
+
results[sq_id] = {"tool": sq.tool_name, "answer": ans}
|
| 407 |
+
except Exception as e:
|
| 408 |
+
results[sq_id] = {"tool": sq.tool_name, "answer": f"❌ Error calling tool: {e}"}
|
| 409 |
+
|
| 410 |
+
return {"execution_order": exec_order, "results": results}
|
| 411 |
+
|
| 412 |
+
'''
|
| 413 |
+
def synthesize_answer(user_q: str, exec_result: Dict[str, Any]) -> str:
|
| 414 |
+
"""
|
| 415 |
+
Use OpenAI to write a concise final answer using all tool outputs.
|
| 416 |
+
"""
|
| 417 |
+
tool_outputs = []
|
| 418 |
+
for batch in exec_result.get("execution_order", []):
|
| 419 |
+
for sq_id in batch:
|
| 420 |
+
entry = exec_result["results"].get(sq_id, {})
|
| 421 |
+
tool_outputs.append(f"[{sq_id} • {entry.get('tool')}] {entry.get('answer', '')}")
|
| 422 |
+
context = "\n".join(tool_outputs) if tool_outputs else "(no tool outputs)"
|
| 423 |
+
|
| 424 |
+
prompt = f"""You are a helpful assistant for JEE/JOSAA counseling.
|
| 425 |
+
|
| 426 |
+
User Question:
|
| 427 |
+
{user_q}
|
| 428 |
+
|
| 429 |
+
Tool Results:
|
| 430 |
+
{context}
|
| 431 |
+
|
| 432 |
+
Write a concise, accurate final answer grounded in the tool results.
|
| 433 |
+
If the tool results are insufficient, state that clearly.
|
| 434 |
+
Avoid bracketed tags and avoid repeating metadata like [sq1].
|
| 435 |
+
"""
|
| 436 |
+
return llm_invoke(prompt, system="You are a helpful assistant. Use only provided context.", temperature=0.2)
|
| 437 |
+
'''
|
| 438 |
+
|
| 439 |
+
# AFTER (CHANGE):
|
| 440 |
+
def synthesize_answer(user_q, exec_result, conversation_context: str):
|
| 441 |
+
tool_outputs = []
|
| 442 |
+
# ...
|
| 443 |
+
prompt = f"""You are a helpful assistant for JEE/JOSAA counseling.
|
| 444 |
+
|
| 445 |
+
Recent conversation:
|
| 446 |
+
{conversation_context or "(none)"}
|
| 447 |
+
|
| 448 |
+
User Question:
|
| 449 |
+
{user_q}
|
| 450 |
+
|
| 451 |
+
Tool Results:
|
| 452 |
+
{exec_result}
|
| 453 |
+
|
| 454 |
+
Write a concise, accurate final answer grounded in the tool results and the recent conversation.
|
| 455 |
+
If the available context is insufficient, state that clearly.
|
| 456 |
+
Avoid bracketed tags and metadata like [sq1].
|
| 457 |
+
"""
|
| 458 |
+
return llm_invoke(prompt, system="You are a helpful assistant. Use only provided context.", temperature=0.2)
|
| 459 |
+
|
| 460 |
+
# -------------------- Public entry point used by chat_app --------------------
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
# AFTER (CHANGE):
|
| 464 |
+
def run_agent(
|
| 465 |
+
user_q: str,
|
| 466 |
+
mcp_client,
|
| 467 |
+
available_iits: List[str],
|
| 468 |
+
available_branches: List[str],
|
| 469 |
+
years: List[str],
|
| 470 |
+
conversation: List[Dict[str, str]], # NEW
|
| 471 |
+
top_k: int = 5,
|
| 472 |
+
temperature: float = 0.1,
|
| 473 |
+
) -> str:
|
| 474 |
+
conversation_context = _format_history_for_context(conversation, max_turns=8)
|
| 475 |
+
|
| 476 |
+
intent = intent_detect(user_q, available_iits, available_branches, years, conversation_context)
|
| 477 |
+
print(intent)
|
| 478 |
+
|
| 479 |
+
print("The intent response is", f"{intent}")
|
| 480 |
+
if intent.intent == "chit_chat":
|
| 481 |
+
return (
|
| 482 |
+
f"Hi! I’m your JOSAA Counseling Assistant.\n"
|
| 483 |
+
f"Ask about branches, opening/closing ranks, or options for your rank.\n"
|
| 484 |
+
f"Supported IITs: {', '.join(available_iits)}; branches: {', '.join(available_branches)}."
|
| 485 |
+
)
|
| 486 |
+
if not intent.in_scope or intent.intent == "out_of_scope":
|
| 487 |
+
return (
|
| 488 |
+
"This assistant only supports JEE/JOSAA counseling.\n"
|
| 489 |
+
f"Supported IITs: {', '.join(available_iits)}; branches: {', '.join(available_branches)}.\n"
|
| 490 |
+
"Please refine your query accordingly."
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
# In-scope → plan → execute → synthesize
|
| 494 |
+
|
| 495 |
+
plan = make_query_plan(user_q, available_iits, available_branches, years, conversation_context)
|
| 496 |
+
print(plan)
|
| 497 |
+
exec_result = execute_plan(user_q, plan, mcp_client, conversation_context, temperature=temperature, top_k=top_k)
|
| 498 |
+
final = synthesize_answer(user_q, exec_result, conversation_context)
|
| 499 |
+
return final.strip()
|
| 500 |
+
|