File size: 14,186 Bytes
6eba330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# FleetMind MCP Server
**Industry-standard Model Context Protocol server for AI-powered delivery dispatch management**
[](https://github.com/jlowin/fastmcp)
[](https://www.python.org/)
[](LICENSE)
---
## Overview
FleetMind MCP Server provides 18 AI tools and 2 real-time resources for managing delivery dispatch operations through any MCP-compatible client (Claude Desktop, Continue, Cline, etc.).
**What is MCP?**
The Model Context Protocol (MCP) is an open standard that enables AI assistants to securely connect to external data sources and tools. Think of it as a universal API for AI agents.
---
## Quick Start
### 1. Installation
```bash
# Clone the repository
git clone https://github.com/your-org/fleetmind-mcp.git
cd fleetmind-mcp
# Install dependencies
pip install -r requirements.txt
# Configure environment variables
cp .env.example .env
# Edit .env with your credentials
```
### 2. Configure Environment
Edit `.env` file:
```ini
# Database (required)
DB_HOST=your-postgres-host.com
DB_PORT=5432
DB_NAME=fleetmind
DB_USER=your_db_user
DB_PASSWORD=your_db_password
# Google Maps API (required for geocoding)
GOOGLE_MAPS_API_KEY=your_google_maps_key
```
### 3. Test the Server
```bash
# Test server imports and database connectivity
python -c "import server; print('FleetMind MCP Server ready!')"
```
### 4. Run with Claude Desktop
Add to your Claude Desktop config (`claude_desktop_config.json`):
```json
{
"mcpServers": {
"fleetmind": {
"command": "python",
"args": ["F:\\path\\to\\fleetmind-mcp\\server.py"],
"env": {
"GOOGLE_MAPS_API_KEY": "your_api_key",
"DB_HOST": "your-host.com",
"DB_NAME": "fleetmind",
"DB_USER": "your_user",
"DB_PASSWORD": "your_password"
}
}
}
}
```
Restart Claude Desktop. You'll now see FleetMind tools available!
---
## Architecture
### **Before (Gradio UI):**
```
User β Gradio Web UI β ChatEngine β Gemini/Claude API β Tools β Database
```
### **After (MCP Protocol):**
```
User β Claude Desktop (or any MCP client) β MCP Protocol β FleetMind Server β Tools β Database
ββ Continue.dev βββββββββββββββββββββββββ
ββ Cline ββββββββββββββββββββββββββββββββ
ββ Custom Apps βββββββββββββββββββββββββββ
```
**Benefits:**
- β
Use from multiple clients (Claude Desktop, VS Code, mobile apps)
- β
46% less code (no UI, no provider abstractions)
- β
Industry-standard protocol (MCP)
- β
Better testing (isolated tools)
- β
Scalable architecture
---
## Features
### **18 AI Tools**
#### Order Management (10 tools)
- `geocode_address` - Convert addresses to GPS coordinates
- `calculate_route` - Find shortest route between locations
- `create_order` - Create new delivery orders
- `count_orders` - Count orders with filters
- `fetch_orders` - Retrieve orders with pagination
- `get_order_details` - Get complete order information
- `search_orders` - Search by customer/ID
- `get_incomplete_orders` - List active deliveries
- `update_order` - Update order details (auto-geocoding)
- `delete_order` - Permanently remove orders
#### Driver Management (8 tools)
- `create_driver` - Onboard new drivers
- `count_drivers` - Count drivers with filters
- `fetch_drivers` - Retrieve drivers with pagination
- `get_driver_details` - Get driver info + reverse-geocoded location
- `search_drivers` - Search by name/plate/ID
- `get_available_drivers` - List drivers ready for dispatch
- `update_driver` - Update driver information
- `delete_driver` - Remove drivers from fleet
### **2 Real-Time Resources**
- `orders://all` - Live orders dataset (last 30 days, max 1000)
- `drivers://all` - Live drivers dataset with locations
Resources provide AI assistants with contextual data for smarter responses.
---
## Usage Examples
### Example 1: Create an Order
**User (in Claude Desktop):**
"Create an urgent delivery order for Sarah Johnson at 456 Oak Ave, San Francisco CA. Phone: 555-1234."
**Claude automatically:**
1. Calls `geocode_address("456 Oak Ave, San Francisco CA")`
2. Gets coordinates: `(37.7749, -122.4194)`
3. Calls `create_order(customer_name="Sarah Johnson", delivery_address="456 Oak Ave, SF CA 94103", delivery_lat=37.7749, delivery_lng=-122.4194, customer_phone="555-1234", priority="urgent")`
4. Returns: `"Order ORD-20251114163800 created successfully!"`
### Example 2: Assign Driver
**User:**
"Assign order ORD-20251114163800 to the nearest available driver"
**Claude automatically:**
1. Calls `get_order_details("ORD-20251114163800")` β Gets delivery location
2. Calls `get_available_drivers(limit=10)` β Lists available drivers
3. Calls `calculate_route()` for each driver β Finds nearest
4. Calls `update_order(order_id="ORD-20251114163800", assigned_driver_id="DRV-...", status="assigned")`
5. Returns: `"Order assigned to John Smith (DRV-20251110120000), 5.2 km away, ETA 12 mins"`
### Example 3: Track Orders
**User:**
"Show me all urgent orders that haven't been delivered yet"
**Claude automatically:**
1. Calls `fetch_orders(status="pending", priority="urgent")` OR
2. Calls `fetch_orders(status="in_transit", priority="urgent")`
3. Returns formatted list with customer names, addresses, and deadlines
---
## API Reference
### Tool: `create_order`
Create a new delivery order.
**Parameters:**
- `customer_name` (string, required): Full name
- `delivery_address` (string, required): Complete address
- `delivery_lat` (float, required): Latitude from geocoding
- `delivery_lng` (float, required): Longitude from geocoding
- `customer_phone` (string, optional): Phone number
- `customer_email` (string, optional): Email address
- `priority` (enum, optional): `standard` | `express` | `urgent` (default: `standard`)
- `weight_kg` (float, optional): Package weight (default: 5.0)
- `special_instructions` (string, optional): Delivery notes
- `time_window_end` (string, optional): Deadline in ISO format (default: +6 hours)
**Returns:**
```json
{
"success": true,
"order_id": "ORD-20251114163800",
"status": "pending",
"customer": "Sarah Johnson",
"address": "456 Oak Ave, San Francisco CA 94103",
"deadline": "2025-11-14T22:38:00",
"priority": "urgent",
"message": "Order created successfully!"
}
```
### Tool: `calculate_route`
Calculate shortest route between two locations.
**Parameters:**
- `origin` (string, required): Starting location (address or "lat,lng")
- `destination` (string, required): Ending location (address or "lat,lng")
- `mode` (enum, optional): `driving` | `walking` | `bicycling` | `transit` (default: `driving`)
- `alternatives` (boolean, optional): Return multiple routes (default: false)
- `include_steps` (boolean, optional): Include turn-by-turn directions (default: false)
**Returns:**
```json
{
"success": true,
"origin": "San Francisco City Hall, CA 94102, USA",
"destination": "Oakland Airport, CA 94621, USA",
"distance": {"meters": 25400, "text": "25.4 km"},
"duration": {"seconds": 1680, "text": "28 mins"},
"mode": "driving",
"route_summary": "I-880 N",
"confidence": "high (Google Maps API)"
}
```
### Resource: `orders://all`
Real-time orders dataset for AI context.
**Contains:** All orders from last 30 days (max 1000)
**Fields:** order_id, customer_name, delivery_address, status, priority, created_at, assigned_driver_id
**Usage:** AI automatically references this when answering questions like "How many pending orders?" or "What's the oldest unassigned order?"
### Resource: `drivers://all`
Real-time drivers dataset with current locations.
**Contains:** All drivers sorted alphabetically
**Fields:** driver_id, name, status, vehicle_type, vehicle_plate, current_lat, current_lng, last_location_update
**Usage:** AI automatically references this for questions like "How many active drivers?" or "Which driver is closest to downtown?"
---
## Database Schema
### `orders` table (26 columns)
```sql
CREATE TABLE orders (
order_id VARCHAR(50) PRIMARY KEY,
customer_name VARCHAR(255) NOT NULL,
customer_phone VARCHAR(20),
customer_email VARCHAR(255),
delivery_address TEXT NOT NULL,
delivery_lat DECIMAL(10,8),
delivery_lng DECIMAL(11,8),
status VARCHAR(20) CHECK (status IN ('pending','assigned','in_transit','delivered','failed','cancelled')),
priority VARCHAR(20) CHECK (priority IN ('standard','express','urgent')),
time_window_end TIMESTAMP,
assigned_driver_id VARCHAR(50),
payment_status VARCHAR(20) CHECK (payment_status IN ('pending','paid','cod')),
weight_kg DECIMAL(10,2),
special_instructions TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
-- ... additional fields
);
```
### `drivers` table (15 columns)
```sql
CREATE TABLE drivers (
driver_id VARCHAR(50) PRIMARY KEY,
name VARCHAR(255) NOT NULL,
phone VARCHAR(20),
email VARCHAR(255),
status VARCHAR(20) CHECK (status IN ('active','busy','offline','unavailable')),
vehicle_type VARCHAR(50),
vehicle_plate VARCHAR(20),
capacity_kg DECIMAL(10,2),
skills JSONB,
current_lat DECIMAL(10,8),
current_lng DECIMAL(11,8),
last_location_update TIMESTAMP,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
```
---
## Development
### Project Structure
```
fleetmind-mcp/
βββ server.py # Main MCP server (882 lines)
βββ pyproject.toml # Package configuration
βββ mcp_config.json # MCP metadata
βββ requirements.txt # Dependencies
βββ .env # Environment variables
β
βββ chat/
β βββ tools.py # 18 tool handlers (2099 lines)
β βββ geocoding.py # Geocoding service (429 lines)
β
βββ database/
β βββ connection.py # Database layer (221 lines)
β βββ schema.py # Schema definitions (213 lines)
β
βββ logs/ # Server logs
βββ docs/ # Documentation
```
### Running Tests
```bash
# Install test dependencies
pip install pytest pytest-asyncio
# Run tests
pytest tests/
```
### Testing with MCP Inspector
```bash
# Official MCP protocol testing tool
npx @modelcontextprotocol/inspector python server.py
```
---
## Deployment
### Option 1: Local Development
```bash
python server.py
```
### Option 2: Docker Container
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["python", "server.py"]
```
```bash
docker build -t fleetmind-mcp .
docker run -d --env-file .env fleetmind-mcp
```
### Option 3: Production Server
For production, use a process manager like `supervisord` or `systemd`:
```ini
# /etc/systemd/system/fleetmind-mcp.service
[Unit]
Description=FleetMind MCP Server
After=network.target
[Service]
Type=simple
User=fleetmind
WorkingDirectory=/opt/fleetmind-mcp
Environment="PATH=/opt/fleetmind-mcp/venv/bin"
EnvironmentFile=/opt/fleetmind-mcp/.env
ExecStart=/opt/fleetmind-mcp/venv/bin/python server.py
Restart=always
[Install]
WantedBy=multi-user.target
```
---
## Troubleshooting
### Error: "Cannot import name 'UserMessage'"
**Solution:** Prompts are currently disabled pending FastMCP API confirmation. Tools and resources work perfectly.
### Error: "Database connection failed"
**Check:**
1. `.env` file has correct credentials
2. PostgreSQL server is running
3. Database `fleetmind` exists
4. Network allows connection (check firewall/security groups)
### Error: "Geocoding failed"
**Check:**
1. `GOOGLE_MAPS_API_KEY` is set in `.env`
2. API key has Geocoding API enabled
3. API key has sufficient quota
**Fallback:** Server automatically uses mock geocoding if API unavailable.
---
## Migration from Gradio UI
### What Changed?
| Component | Gradio Version | MCP Version |
|-----------|----------------|-------------|
| UI | Gradio web interface | Any MCP client |
| AI Provider | Gemini/Claude via API | Client handles AI |
| Tool Execution | chat/tools.py handlers | Same handlers |
| Database | PostgreSQL/Neon | Same database |
| Geocoding | Google Maps API | Same API |
### What Stayed the Same?
- β
All 18 tool handlers (unchanged)
- β
Database schema (identical)
- β
Geocoding logic (same)
- β
Business logic (preserved)
- β
.env configuration (compatible)
### Migration Steps
1. **Backup your data:** `pg_dump fleetmind > backup.sql`
2. **Install MCP dependencies:** `pip install -r requirements.txt`
3. **Test server:** `python -c "import server"`
4. **Configure Claude Desktop:** Add server to `claude_desktop_config.json`
5. **Test with Claude:** Create a test order
6. **Archive old code:** Move `ui/`, `chat/providers/`, `chat/chat_engine.py` to `archive/`
---
## Contributing
We welcome contributions! Please:
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
---
## License
MIT License - see [LICENSE](LICENSE) file for details.
---
## Support
- **Issues:** https://github.com/your-org/fleetmind-mcp/issues
- **Documentation:** https://docs.fleetmind.com
- **Discord:** https://discord.gg/fleetmind
---
## Roadmap
- [x] Convert all 18 tools to MCP format
- [x] Add 2 real-time resources (orders, drivers)
- [ ] Add prompt templates (pending FastMCP API confirmation)
- [ ] Add assignment optimization algorithm
- [ ] Add route optimization for multi-stop deliveries
- [ ] Add real-time driver tracking via WebSocket
- [ ] Add analytics dashboard
- [] Mobile app MCP client
---
**Built with β€οΈ using [FastMCP](https://github.com/jlowin/fastmcp)**
|