MJaheen's picture
add debug funcition for monitor results
b67b56b
"""Pepe the Frog Meme Generator - Main Streamlit Application.
This is the main entry point for the web application. It provides a user-friendly
interface for generating Pepe memes using AI-powered Stable Diffusion models.
The application features:
- Model selection (multiple LoRA variants, LCM support)
- Style presets and raw prompt mode
- Advanced generation settings (steps, guidance, seed)
- Text overlay capability for meme creation
- Gallery system for viewing generated images
- Download functionality
- Progress tracking during generation
Application Structure:
1. Page configuration and styling
2. Session state initialization
3. Model loading and caching
4. Sidebar UI (model selection, settings)
5. Main content area (prompt input, generation)
6. Results display and download
7. Gallery view
Usage:
Run with: streamlit run src/app.py
Access at: http://localhost:8501
Author: MJaheen
License: MIT
"""
import streamlit as st
from PIL import Image
import io
from datetime import datetime
# Import our modules
from model.generator import PepeGenerator
from model.config import ModelConfig
from utils.image_processor import ImageProcessor
# Page config
st.set_page_config(
page_title="🐸 Pepe Meme Generator",
page_icon="🐸",
layout="wide",
)
# Custom CSS
st.markdown("""
<style>
.stButton>button {
width: 100%;
background-color: #4CAF50;
color: white;
height: 3em;
border-radius: 10px;
font-weight: bold;
}
.stButton>button:hover {
background-color: #45a049;
}
</style>
""", unsafe_allow_html=True)
def init_session_state():
"""
Initialize Streamlit session state variables.
This function sets up persistent state across app reruns:
- generated_images: List of all generated images in current session
- generation_count: Counter for tracking total generations
- current_model: Currently selected model name for cache invalidation
Session state persists across reruns but is reset when the page is refreshed.
"""
if 'generated_images' not in st.session_state:
st.session_state.generated_images = []
if 'generation_count' not in st.session_state:
st.session_state.generation_count = 0
if 'current_model' not in st.session_state:
st.session_state.current_model = None
@st.cache_resource
def load_generator(model_name: str = "Pepe Fine-tuned (LoRA)"):
"""
Load and cache the Stable Diffusion generator.
This function loads a PepeGenerator instance configured with the selected
model. It's cached using @st.cache_resource to avoid reloading the model
on every interaction, which would be very slow.
The cache is automatically invalidated when:
- The model_name parameter changes
- The user manually clears cache
Args:
model_name: Name of the model from AVAILABLE_MODELS dict.
Examples: "Pepe Fine-tuned (LoRA)", "Pepe + LCM (FAST)"
Returns:
PepeGenerator: Configured generator instance with loaded model.
Note:
Model loading can take 30-60 seconds on first load as it downloads
weights from Hugging Face (~4GB for base model + LoRA).
"""
config = ModelConfig()
model_config = config.AVAILABLE_MODELS[model_name]
# Update config with selected model settings
config.BASE_MODEL = model_config['base']
config.LORA_PATH = model_config.get('lora')
config.USE_LORA = model_config.get('use_lora', False)
config.TRIGGER_WORD = model_config.get('trigger_word', 'pepe the frog')
# LCM settings
config.USE_LCM = model_config.get('use_lcm', False)
config.LCM_LORA_PATH = model_config.get('lcm_lora')
# Log which model is being loaded
import logging
logger = logging.getLogger(__name__)
logger.info(f"Loading model: {model_name}")
logger.info(f"Base: {config.BASE_MODEL}, LoRA: {config.USE_LORA}, LCM: {config.USE_LCM}")
return PepeGenerator(config)
def debug_generation_inputs(timestamp, prompt, style, steps, guidance, seed, model, top_text, bottom_text, num_vars, raw_prompt=False, use_seed=False, add_text=False, font_size=40, font_path=""):
"""
Debug function to print all generation inputs when 'Generate Meme' is pressed.
Args:
timestamp: Current timestamp when generation started
prompt: The user's text prompt
style: Selected style preset
steps: Number of inference steps
guidance: Guidance scale value
seed: Random seed (if used)
model: Selected model name
top_text: Top meme text
bottom_text: Bottom meme text
num_vars: Number of variations to generate
raw_prompt: Whether raw prompt mode is enabled
use_seed: Whether fixed seed is enabled
add_text: Whether text overlay is enabled
font_size: Font size for text overlay
font_path: Path to font file
"""
print("=" * 80)
print("🎨 MEME GENERATION DEBUG INFO")
print("=" * 80)
print(f"⏰ Timestamp: {timestamp}")
print(f"🤖 Model: {model}")
print(f"📝 Prompt: {prompt}")
print(f"🎨 Style: {style}")
print(f"⚙️ Steps: {steps}")
print(f"🎯 Guidance Scale: {guidance}")
print(f"🔢 Seed Enabled: {use_seed}")
if use_seed:
print(f"🎲 Seed Value: {seed}")
print(f"🔄 Variations: {num_vars}")
print(f"📝 Raw Prompt Mode: {raw_prompt}")
print(f"💬 Text Overlay: {add_text}")
if add_text:
print(f"📝 Top Text: '{top_text}'")
print(f"📝 Bottom Text: '{bottom_text}'")
print(f"🔤 Font Size: {font_size}")
print(f"📁 Font Path: {font_path}")
print("=" * 80)
print("🚀 Starting image generation...")
print("=" * 80)
return datetime.now() # Return start time for timing calculation
def debug_generation_complete(start_time, num_vars):
"""
Debug function to print generation completion time and performance metrics.
Args:
start_time: The datetime when generation started
num_vars: Number of variations generated
"""
end_time = datetime.now()
total_time = end_time - start_time
total_seconds = total_time.total_seconds()
print("=" * 80)
print("✅ MEME GENERATION COMPLETED")
print("=" * 80)
print(f"⏱️ Total Time: {total_seconds:.2f} seconds")
print(f"🖼️ Images Generated: {num_vars}")
if num_vars > 1:
print(f"⏱️ Average Time per Image: {total_seconds/num_vars:.2f} seconds")
print(f"🏁 Finished at: {end_time.strftime('%Y-%m-%d %H:%M:%S')}")
print("=" * 80)
def get_example_prompts():
"""
Return a list of example prompts for inspiration.
These prompts are designed to work well with the fine-tuned Pepe model
and demonstrate various styles, activities, and scenarios.
Returns:
list: List of example prompt strings with trigger word and descriptions.
"""
return [
"pepe the frog as a wizard casting spells",
"pepe the frog coding on a laptop",
"pepe the frog drinking coffee",
"pepe the frog as a superhero",
"pepe the frog reading a book",
]
def main():
"""
Main application function that builds and runs the Streamlit UI.
This function orchestrates the entire application flow:
1. Initializes session state
2. Loads configuration and sets up sidebar controls
3. Handles model selection and switching
4. Processes user input (prompts, settings)
5. Generates images when requested
6. Displays results with download options
7. Shows gallery of previous generations
The UI is organized into:
- Sidebar: Model selection, style presets, advanced settings
- Main area: Prompt input, generation button, results
- Bottom: Gallery view (expandable)
Flow:
User selects model → Enters prompt → Adjusts settings →
Clicks generate → Shows progress → Displays result →
Offers download → Adds to gallery
"""
# Initialize session state for persistent data across reruns
init_session_state()
# Sidebar (needs to be first to define selected_model)
st.sidebar.header("⚙️ Settings")
# Model selection
st.sidebar.subheader("🤖 Model Selection")
config = ModelConfig()
available_models = list(config.AVAILABLE_MODELS.keys())
selected_model = st.sidebar.selectbox(
"Choose Model",
available_models,
index=0,
help="Select which model to use for generation"
)
# Detect model change and auto-clear cache
if st.session_state.current_model is not None and st.session_state.current_model != selected_model:
st.cache_resource.clear()
st.sidebar.success(f"✅ Switched to: {selected_model}")
# Update current model in session state
st.session_state.current_model = selected_model
# Show LCM mode indicator if enabled
model_config = config.AVAILABLE_MODELS[selected_model]
if model_config.get('use_lcm', False):
st.sidebar.success("⚡ LCM Mode: 8x Faster! (6-8 steps optimal)")
# Header
st.title("🐸 Pepe the Frog Meme Generator")
st.markdown("Create custom Pepe memes using AI! Powered by Stable Diffusion.")
st.sidebar.divider()
# Style selection
st.sidebar.subheader("🎨 Style & Prompt")
style_options = {
"Default": "default",
"😊 Happy": "happy",
"😢 Sad": "sad",
"😏 Smug": "smug",
"😠 Angry": "angry",
"🤔 Thinking": "thinking",
"😲 Surprised": "surprised",
}
selected_style = st.sidebar.selectbox(
"Choose Style",
list(style_options.keys())
)
style = style_options[selected_style]
# Raw prompt mode
use_raw_prompt = st.sidebar.checkbox(
"Raw Prompt Mode",
help="Use your exact prompt without trigger words or style modifiers"
)
# Advanced settings - adjust defaults based on LCM mode
is_lcm_mode = model_config.get('use_lcm', False)
with st.sidebar.expander("🔧 Advanced Settings"):
if is_lcm_mode:
# LCM needs fewer steps and lower guidance
steps = st.slider("Steps", 4, 12, 6, 1,
help="⚡ LCM Mode: 4-8 steps optimal. Recommended: 6")
guidance = st.slider("Guidance Scale", 1.0, 2.5, 1.5, 0.1,
help="⚡ LCM Mode: Lower guidance (1.0-2.0). Recommended: 1.5")
else:
# Normal mode settings
steps = st.slider("Steps", 15, 50, 25, 5,
help="Fewer steps = faster generation. 20-25 recommended for CPU")
guidance = st.slider("Guidance Scale", 1.0, 20.0, 7.5, 0.5)
use_seed = st.checkbox("Fixed Seed")
seed = st.number_input("Seed", 0, 999999, 42) if use_seed else None
# Text overlay settings
with st.sidebar.expander("💬 Add Text"):
add_text = st.checkbox("Add Meme Text")
top_text = st.text_input("Top Text") if add_text else ""
bottom_text = st.text_input("Bottom Text") if add_text else ""
font_size = st.slider("Font Size", 10, 100, 40, 1)
font_path = config.FONT_PATH
# Main area
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("✏️ Create Your Meme")
# Prompt input
prompt = st.text_area(
"Describe your meme",
height=100,
placeholder="e.g., pepe the frog celebrating victory"
)
# Examples
with st.expander("💡 Example Prompts"):
for example in get_example_prompts():
st.write(f"• {example}")
# Generate button
col_btn1, col_btn2 = st.columns([3, 1])
with col_btn1:
generate = st.button("🎨 Generate Meme", type="primary")
with col_btn2:
num_vars = st.number_input("Variations", 1, 4, 1)
with col2:
st.subheader("🖼️ Generated Meme")
placeholder = st.empty()
if st.session_state.generated_images:
placeholder.image(
st.session_state.generated_images[-1],
use_column_width=True
)
else:
placeholder.info("Your meme will appear here...")
# Generate
if generate and prompt:
# Debug: Print all generation inputs and get start time
start_time = debug_generation_inputs(
timestamp=datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
prompt=prompt,
style=style,
steps=steps,
guidance=guidance,
seed=seed,
model=selected_model,
top_text=top_text,
bottom_text=bottom_text,
num_vars=num_vars,
raw_prompt=use_raw_prompt,
use_seed=use_seed,
add_text=add_text,
font_size=font_size,
font_path=font_path
)
try:
generator = load_generator(selected_model)
processor = ImageProcessor()
# Overall progress for multiple images
overall_progress = st.progress(0)
overall_status = st.empty()
# Progress for current image generation steps
step_progress = st.progress(0)
step_status = st.empty()
for i in range(num_vars):
overall_status.text(f"Generating image {i+1}/{num_vars}...")
# Define callback for step-by-step progress
def progress_callback(current_step: int, total_steps: int):
step_progress.progress(current_step / total_steps)
step_status.text(f"Step {current_step}/{total_steps}")
# Generate with progress callback
image = generator.generate(
prompt=prompt,
style=style,
num_inference_steps=steps,
guidance_scale=guidance,
seed=seed,
progress_callback=progress_callback,
raw_prompt=use_raw_prompt
)
# Add text if requested
if add_text and (top_text or bottom_text):
image = processor.add_meme_text(image, top_text, bottom_text,font_size,font_path)
# Always add MJ signature
image = processor.add_signature(image, signature="MJaheen", font_size=10, opacity=200)
st.session_state.generated_images.append(image)
st.session_state.generation_count += 1
# Update overall progress
overall_progress.progress((i + 1) / num_vars)
# Clear progress indicators
overall_progress.empty()
overall_status.empty()
step_progress.empty()
step_status.empty()
# Debug: Print completion time and performance metrics
debug_generation_complete(start_time, num_vars)
# Show result
if num_vars == 1:
placeholder.image(image, use_column_width=True)
# Download
buf = io.BytesIO()
image.save(buf, format="PNG")
st.download_button(
"⬇️ Download",
buf.getvalue(),
f"pepe_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png",
"image/png"
)
else:
st.subheader("All Variations")
cols = st.columns(min(num_vars, 2))
for idx, img in enumerate(st.session_state.generated_images[-num_vars:]):
with cols[idx % 2]:
st.image(img, use_column_width=True)
except Exception as e:
st.error(f"Error: {str(e)}")
elif generate and not prompt:
st.error("Please enter a prompt!")
# Gallery
if st.session_state.generated_images:
st.divider()
with st.expander(f"🖼️ Gallery ({len(st.session_state.generated_images)} images)"):
cols = st.columns(4)
for idx, img in enumerate(reversed(st.session_state.generated_images[-8:])):
with cols[idx % 4]:
st.image(img, use_column_width=True)
# Footer
st.divider()
col_a, col_b, col_c = st.columns(3)
with col_a:
st.metric("Total Generated", st.session_state.generation_count)
with col_b:
st.metric("In Gallery", len(st.session_state.generated_images))
with col_c:
if st.button("🗑️ Clear"):
st.session_state.generated_images = []
st.session_state.generation_count = 0
st.rerun()
# Personal Information
st.divider()
st.markdown("### 👨‍💻 About the Engineer")
info_col1, info_col2 = st.columns(2)
with info_col1:
st.markdown("""
**Contact Information:**
- 📧 Email: [[email protected]](mailto:[email protected])
- 🔗 LinkedIn: [Mohamed Jaheen](https://www.linkedin.com/in/mohamedjaheen/)
""")
with info_col2:
st.markdown("""
**About this App:**
- supported by worldquant university
- Built with Streamlit & Stable Diffusion
- Fine-tuned Pepe model available
- Open source and customizable
- MIT licences
""")
st.caption("© 2025 - AI Meme Generator (Pepe the Frog) | Made with ❤️ using Python and MJ")
if __name__ == "__main__":
main()