Spaces:
Build error
Build error
Commit
Β·
fd31e5f
1
Parent(s):
28e566d
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,34 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
|
| 3 |
-
download = False
|
| 4 |
-
save_model_locally= False
|
| 5 |
-
if download:
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
else:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
|
| 27 |
-
#%%generator_sent
|
| 28 |
|
| 29 |
from transformers import pipeline
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
generator_sent = pipeline(task="text-classification", model_sent=model_sent, tokenizer=tokenizer, return_all_scores =True)
|
| 33 |
-
generator_emo = pipeline(task="text-classification", model_sent=model_emo, tokenizer=tokenizer_emo, return_all_scores =True)
|
| 34 |
|
| 35 |
def sentiment_emoji(input_abs):
|
| 36 |
|
|
@@ -38,6 +36,7 @@ def sentiment_emoji(input_abs):
|
|
| 38 |
return "π€·ββοΈ"
|
| 39 |
|
| 40 |
res = generator_sent(input_abs)[0]
|
|
|
|
| 41 |
res = {res[x]["label"]: res[x]["score"] for x in range(len(res))}
|
| 42 |
res["π positive"] = res.pop("positive")
|
| 43 |
res["π negative"] = res.pop("negative")
|
|
|
|
| 1 |
+
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
|
| 3 |
+
# download = False
|
| 4 |
+
# save_model_locally= False
|
| 5 |
+
# if download:
|
| 6 |
+
# tokenizer = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/")
|
| 7 |
+
# model_sent = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/")
|
| 8 |
+
# model_sent.eval()
|
| 9 |
+
# tokenizer_emo = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/")
|
| 10 |
+
# model_emo = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/")
|
| 11 |
+
# model_emo.eval()
|
| 12 |
+
# if save_model_locally:
|
| 13 |
+
# model_sent.save_pretrained('./local_models/sentiment_ITA')
|
| 14 |
+
# tokenizer.save_pretrained('./local_models/sentiment_ITA')
|
| 15 |
+
# model_emo.save_pretrained('./local_models/emotion_ITA')
|
| 16 |
+
# tokenizer_emo.save_pretrained('./local_models/emotion_ITA')
|
| 17 |
+
# else:
|
| 18 |
+
# tokenizer = AutoTokenizer.from_pretrained("./local_models/sentiment_ITA/")
|
| 19 |
+
# model_sent = AutoModelForSequenceClassification.from_pretrained("./local_models/sentiment_ITA/", num_labels=2)
|
| 20 |
+
# model_sent.eval()
|
| 21 |
|
| 22 |
+
# tokenizer_emo = AutoTokenizer.from_pretrained("./local_models/emotion_ITA/")
|
| 23 |
+
# model_emo = AutoModelForSequenceClassification.from_pretrained("./local_models/emotion_ITA/", num_labels=4)
|
| 24 |
+
# model_emo.eval()
|
| 25 |
|
| 26 |
|
| 27 |
+
# #%%generator_sent
|
| 28 |
|
| 29 |
from transformers import pipeline
|
| 30 |
+
generator_sent = pipeline(task="text-classification", model='./local_models/sentiment_ITA/', top_k=None)
|
| 31 |
+
generator_emo = pipeline(task="text-classification", model='./local_models/emotion_ITA/', top_k=None)
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def sentiment_emoji(input_abs):
|
| 34 |
|
|
|
|
| 36 |
return "π€·ββοΈ"
|
| 37 |
|
| 38 |
res = generator_sent(input_abs)[0]
|
| 39 |
+
print("res: ", res)
|
| 40 |
res = {res[x]["label"]: res[x]["score"] for x in range(len(res))}
|
| 41 |
res["π positive"] = res.pop("positive")
|
| 42 |
res["π negative"] = res.pop("negative")
|