Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- backend/pipelines/lcm.py +124 -0
- backend/pipelines/lcm_lora.py +81 -0
backend/pipelines/lcm.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from constants import LCM_DEFAULT_MODEL
|
| 2 |
+
from diffusers import (
|
| 3 |
+
DiffusionPipeline,
|
| 4 |
+
AutoencoderTiny,
|
| 5 |
+
UNet2DConditionModel,
|
| 6 |
+
LCMScheduler,
|
| 7 |
+
StableDiffusionPipeline,
|
| 8 |
+
)
|
| 9 |
+
import torch
|
| 10 |
+
from backend.tiny_autoencoder import get_tiny_autoencoder_repo_id
|
| 11 |
+
from typing import Any
|
| 12 |
+
from diffusers import (
|
| 13 |
+
LCMScheduler,
|
| 14 |
+
StableDiffusionImg2ImgPipeline,
|
| 15 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 16 |
+
AutoPipelineForText2Image,
|
| 17 |
+
AutoPipelineForImage2Image,
|
| 18 |
+
StableDiffusionControlNetPipeline,
|
| 19 |
+
)
|
| 20 |
+
import pathlib
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _get_lcm_pipeline_from_base_model(
|
| 24 |
+
lcm_model_id: str,
|
| 25 |
+
base_model_id: str,
|
| 26 |
+
use_local_model: bool,
|
| 27 |
+
):
|
| 28 |
+
pipeline = None
|
| 29 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 30 |
+
lcm_model_id,
|
| 31 |
+
torch_dtype=torch.float32,
|
| 32 |
+
local_files_only=use_local_model,
|
| 33 |
+
resume_download=True,
|
| 34 |
+
)
|
| 35 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 36 |
+
base_model_id,
|
| 37 |
+
unet=unet,
|
| 38 |
+
torch_dtype=torch.float32,
|
| 39 |
+
local_files_only=use_local_model,
|
| 40 |
+
resume_download=True,
|
| 41 |
+
)
|
| 42 |
+
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
| 43 |
+
return pipeline
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def load_taesd(
|
| 47 |
+
pipeline: Any,
|
| 48 |
+
use_local_model: bool = False,
|
| 49 |
+
torch_data_type: torch.dtype = torch.float32,
|
| 50 |
+
):
|
| 51 |
+
tiny_vae = get_tiny_autoencoder_repo_id(pipeline.__class__.__name__)
|
| 52 |
+
pipeline.vae = AutoencoderTiny.from_pretrained(
|
| 53 |
+
tiny_vae,
|
| 54 |
+
torch_dtype=torch_data_type,
|
| 55 |
+
local_files_only=use_local_model,
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_lcm_model_pipeline(
|
| 60 |
+
model_id: str = LCM_DEFAULT_MODEL,
|
| 61 |
+
use_local_model: bool = False,
|
| 62 |
+
pipeline_args={},
|
| 63 |
+
):
|
| 64 |
+
pipeline = None
|
| 65 |
+
if model_id == "latent-consistency/lcm-sdxl":
|
| 66 |
+
pipeline = _get_lcm_pipeline_from_base_model(
|
| 67 |
+
model_id,
|
| 68 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 69 |
+
use_local_model,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
elif model_id == "latent-consistency/lcm-ssd-1b":
|
| 73 |
+
pipeline = _get_lcm_pipeline_from_base_model(
|
| 74 |
+
model_id,
|
| 75 |
+
"segmind/SSD-1B",
|
| 76 |
+
use_local_model,
|
| 77 |
+
)
|
| 78 |
+
elif pathlib.Path(model_id).suffix == ".safetensors":
|
| 79 |
+
# When loading a .safetensors model, the pipeline has to be created
|
| 80 |
+
# with StableDiffusionPipeline() since it's the only class that
|
| 81 |
+
# defines the method from_single_file()
|
| 82 |
+
dummy_pipeline = StableDiffusionPipeline.from_single_file(
|
| 83 |
+
model_id,
|
| 84 |
+
safety_checker=None,
|
| 85 |
+
run_safety_checker=False,
|
| 86 |
+
load_safety_checker=False,
|
| 87 |
+
local_files_only=use_local_model,
|
| 88 |
+
use_safetensors=True,
|
| 89 |
+
)
|
| 90 |
+
if "lcm" in model_id.lower():
|
| 91 |
+
dummy_pipeline.scheduler = LCMScheduler.from_config(
|
| 92 |
+
dummy_pipeline.scheduler.config
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
pipeline = AutoPipelineForText2Image.from_pipe(
|
| 96 |
+
dummy_pipeline,
|
| 97 |
+
**pipeline_args,
|
| 98 |
+
)
|
| 99 |
+
del dummy_pipeline
|
| 100 |
+
else:
|
| 101 |
+
# pipeline = DiffusionPipeline.from_pretrained(
|
| 102 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 103 |
+
model_id,
|
| 104 |
+
local_files_only=use_local_model,
|
| 105 |
+
**pipeline_args,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
return pipeline
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_image_to_image_pipeline(pipeline: Any) -> Any:
|
| 112 |
+
components = pipeline.components
|
| 113 |
+
pipeline_class = pipeline.__class__.__name__
|
| 114 |
+
if (
|
| 115 |
+
pipeline_class == "LatentConsistencyModelPipeline"
|
| 116 |
+
or pipeline_class == "StableDiffusionPipeline"
|
| 117 |
+
):
|
| 118 |
+
return StableDiffusionImg2ImgPipeline(**components)
|
| 119 |
+
elif pipeline_class == "StableDiffusionControlNetPipeline":
|
| 120 |
+
return AutoPipelineForImage2Image.from_pipe(pipeline)
|
| 121 |
+
elif pipeline_class == "StableDiffusionXLPipeline":
|
| 122 |
+
return StableDiffusionXLImg2ImgPipeline(**components)
|
| 123 |
+
else:
|
| 124 |
+
raise Exception(f"Unknown pipeline {pipeline_class}")
|
backend/pipelines/lcm_lora.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pathlib
|
| 2 |
+
from os import path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import (
|
| 6 |
+
AutoPipelineForText2Image,
|
| 7 |
+
LCMScheduler,
|
| 8 |
+
StableDiffusionPipeline,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def load_lcm_weights(
|
| 13 |
+
pipeline,
|
| 14 |
+
use_local_model,
|
| 15 |
+
lcm_lora_id,
|
| 16 |
+
):
|
| 17 |
+
kwargs = {
|
| 18 |
+
"local_files_only": use_local_model,
|
| 19 |
+
"weight_name": "pytorch_lora_weights.safetensors",
|
| 20 |
+
}
|
| 21 |
+
pipeline.load_lora_weights(
|
| 22 |
+
lcm_lora_id,
|
| 23 |
+
**kwargs,
|
| 24 |
+
adapter_name="lcm",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_lcm_lora_pipeline(
|
| 29 |
+
base_model_id: str,
|
| 30 |
+
lcm_lora_id: str,
|
| 31 |
+
use_local_model: bool,
|
| 32 |
+
torch_data_type: torch.dtype,
|
| 33 |
+
pipeline_args={},
|
| 34 |
+
):
|
| 35 |
+
if pathlib.Path(base_model_id).suffix == ".safetensors":
|
| 36 |
+
# SD 1.5 models only
|
| 37 |
+
# When loading a .safetensors model, the pipeline has to be created
|
| 38 |
+
# with StableDiffusionPipeline() since it's the only class that
|
| 39 |
+
# defines the method from_single_file(); afterwards a new pipeline
|
| 40 |
+
# is created using AutoPipelineForText2Image() for ControlNet
|
| 41 |
+
# support, in case ControlNet is enabled
|
| 42 |
+
if not path.exists(base_model_id):
|
| 43 |
+
raise FileNotFoundError(
|
| 44 |
+
f"Model file not found,Please check your model path: {base_model_id}"
|
| 45 |
+
)
|
| 46 |
+
print("Using single file Safetensors model (Supported models - SD 1.5 models)")
|
| 47 |
+
|
| 48 |
+
dummy_pipeline = StableDiffusionPipeline.from_single_file(
|
| 49 |
+
base_model_id,
|
| 50 |
+
torch_dtype=torch_data_type,
|
| 51 |
+
safety_checker=None,
|
| 52 |
+
local_files_only=use_local_model,
|
| 53 |
+
use_safetensors=True,
|
| 54 |
+
)
|
| 55 |
+
pipeline = AutoPipelineForText2Image.from_pipe(
|
| 56 |
+
dummy_pipeline,
|
| 57 |
+
**pipeline_args,
|
| 58 |
+
)
|
| 59 |
+
del dummy_pipeline
|
| 60 |
+
else:
|
| 61 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 62 |
+
base_model_id,
|
| 63 |
+
torch_dtype=torch_data_type,
|
| 64 |
+
local_files_only=use_local_model,
|
| 65 |
+
**pipeline_args,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
load_lcm_weights(
|
| 69 |
+
pipeline,
|
| 70 |
+
use_local_model,
|
| 71 |
+
lcm_lora_id,
|
| 72 |
+
)
|
| 73 |
+
# Always fuse LCM-LoRA
|
| 74 |
+
# pipeline.fuse_lora()
|
| 75 |
+
|
| 76 |
+
if "lcm" in lcm_lora_id.lower() or "hypersd" in lcm_lora_id.lower():
|
| 77 |
+
print("LCM LoRA model detected so using recommended LCMScheduler")
|
| 78 |
+
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
| 79 |
+
|
| 80 |
+
# pipeline.unet.to(memory_format=torch.channels_last)
|
| 81 |
+
return pipeline
|