File size: 12,256 Bytes
278d275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/env python3
"""

Demo script for RND1 generation.

"""

import torch
import argparse
import os
import sys
import random
import numpy as np
from transformers import AutoTokenizer

# Add RND1 module to path for local testing
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))


def set_seed(seed: int):
    """Set random seed for reproducibility.

    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def demo_completion(

    model_path: str,

    checkpoint_path: str = None,

    device: str = "cuda:0",

    use_bfloat16: bool = True,

    show_visualization: bool = True,

    num_steps: int = 64,

    max_new_tokens: int = 256,

    custom_prompt: str = None,

    temperature: float = 1.0,

    top_k: int = None,

    top_p: float = None,

    mask_token_id: int = 151669,

    seed: int = 12345,

    moe_backend: str = "hf",

    mode: str = "task",

):
    """

    Demonstrate text completion using RND1.



    Args:

        model_path: Path to base model or HuggingFace model ID

        checkpoint_path: Path to custom checkpoint (if any)

        device: Device to run on (e.g., cuda:0, cpu)

        use_bfloat16: Whether to use bfloat16 precision

        show_visualization: Whether to show live visualization (requires rich)

        num_steps: Number of diffusion steps

        max_new_tokens: Maximum number of tokens to generate

        custom_prompt: Custom prompt to use instead of default examples

        temperature: Temperature for sampling (0.0 = greedy)

        top_k: Top-k filtering for sampling (None = disabled)

        top_p: Top-p (nucleus) filtering for sampling (None = disabled)

        mask_token_id: Token ID for mask token

        seed: Random seed for reproducibility

        moe_backend: MoE backend to use ('hf' or 'flashinfer')

        mode: Generation mode ('task' for Q&A format, 'completion' for continuation)

    """
    set_seed(seed)

    from rnd.configuration_rnd import RND1Config
    from rnd.modeling_rnd import RND1LM

    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

    dtype = torch.bfloat16 if use_bfloat16 else torch.float32
    print(f"Using dtype: {dtype}")

    if moe_backend == "hf":
        print("\n⚠️  Note: HuggingFace backend is slower. Consider using --moe_backend flashinfer or sglang for better performance.\n")

    # Load from checkpoint if provided, otherwise from model_path
    load_path = checkpoint_path if checkpoint_path else model_path

    print(f"Loading model from {load_path}...")

    # Load config and set RND1-specific settings
    cfg = RND1Config.from_pretrained(load_path)
    cfg.model_type = "rnd1"
    cfg.attn_implementation = "sdpa"
    cfg.moe_backend = moe_backend

    # Load model with RND1LM
    model = RND1LM.from_pretrained(
        load_path,
        config=cfg,
        torch_dtype=dtype,
        device_map="auto" if device == "cuda:0" else device,
        trust_remote_code=True,
        use_safetensors=True,
        low_cpu_mem_usage=True,
    )
    print("Model loaded")
    model = model.eval()
    
    if custom_prompt:
        prompts = [custom_prompt]
    else:
        # Default prompts based on mode
        if mode == "task":
            prompts = ["Write a Python function that finds the longest common subsequence of two strings. Include comments explaining the algorithm."]
        else:
            prompts = ["The key to understanding quantum computing lies in"]

    greedy = (temperature == 1.0)

    generator = torch.Generator(device=device if device != "auto" else "cuda")
    generator.manual_seed(seed)

    for i, user_prompt in enumerate(prompts):
        print(f"\n{'='*60}")
        print(f"Mode: {mode.upper()}")
        print(f"Prompt {i+1}: {user_prompt[:100]}...")
        print(f"{'='*60}\n")

        if mode == "task":
            # Task mode: Add "Question: " prefix if not already present
            if not user_prompt.strip().startswith("Question:"):
                prompt = f"Question: {user_prompt}\n"
            else:
                prompt = user_prompt
        else:
            # Completion mode: Use prompt as-is for continuation
            prompt = user_prompt
        
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs.input_ids.to(device if device != "auto" else "cuda")
        attention_mask = inputs.attention_mask.to(device if device != "auto" else "cuda") if 'attention_mask' in inputs else None
        
        print("Generation parameters:")
        print(f"  Prompt length: {input_ids.shape[1]} tokens")
        print(f"  Max new tokens: {max_new_tokens}")
        print(f"  Total sequence: {input_ids.shape[1] + max_new_tokens} tokens")
        print(f"  Diffusion steps: {num_steps}")
        print(f"  Temperature: {temperature}")
        print(f"  Greedy: {greedy}")
        if top_k:
            print(f"  Top-k: {top_k}")
        if top_p:
            print(f"  Top-p: {top_p}")
        print()

        # Create explicit generation config that takes priority over model defaults
        from rnd.generation_config import RND1GenerationConfig
        gen_config = RND1GenerationConfig(
            max_new_tokens=max_new_tokens,
            num_diffusion_steps=num_steps,
            mask_token_id=mask_token_id,
            temperature=temperature if not greedy else 1.0,
            top_k=top_k,
            top_p=top_p,
            greedy=greedy,
            eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else 151645,
            pad_token_id=tokenizer.pad_token_id,
            bos_token_id=tokenizer.bos_token_id,
        )

        with torch.no_grad():
            if show_visualization and hasattr(model, 'generate_with_visualization'):
                # Use method with visualization support (requires tokenizer)
                output = model.generate_with_visualization(
                    tokenizer=tokenizer,
                    inputs=input_ids,
                    generation_config=gen_config,
                    generator=generator,
                )
            else:
                # Use standard generate method with explicit config
                output = model.generate(
                    inputs=input_ids,
                    generation_config=gen_config,
                    generator=generator,
                )
        
        generated_tokens = output[0][len(input_ids[0]):]
        generation = tokenizer.decode(
            generated_tokens.tolist(),
            skip_special_tokens=True
        )

        print("\nGenerated response:")
        print(generation)

        print(f"\n(Generation completed in {num_steps} diffusion steps)")


def main():
    parser = argparse.ArgumentParser(
        description="RND1 diffusion model demo with live visualization",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    
    # Model configuration
    model_group = parser.add_argument_group('Model Configuration')
    model_group.add_argument(
        "--model_path",
        type=str,
        default="radicalnumerics/RND1-Base-0910",
        help="Path to model or HuggingFace model ID"
    )
    model_group.add_argument(
        "--checkpoint", 
        type=str, 
        default=None,
        help="Path to custom checkpoint file or directory"
    )
    model_group.add_argument(
        "--device", 
        type=str, 
        default="cuda:0",
        help="Device to run on (e.g., cuda:0, cpu)"
    )
    model_group.add_argument(
        "--fp32", 
        action="store_true",
        help="Use FP32 precision instead of BF16"
    )
    
    # Generation configuration
    gen_group = parser.add_argument_group('Generation Settings')
    gen_group.add_argument(
        "--num_steps", 
        type=int, 
        default=256,
        help="Number of diffusion steps"
    )
    gen_group.add_argument(
        "--max_new_tokens", 
        type=int, 
        default=256,
        help="Maximum number of tokens to generate"
    )
    gen_group.add_argument(
        "--prompt",
        type=str,
        default=None,
        help="Custom prompt to use for generation"
    )
    gen_group.add_argument(
        "--mode",
        type=str,
        default="task",
        choices=["task", "completion"],
        help="Generation mode: 'task' (Q&A format for instructions) or 'completion' (text continuation)"
    )
    gen_group.add_argument(
        "--mask_token_id",
        type=int,
        default=151669,
        help="Token ID for mask token"
    )
    
    # Sampling configuration
    sampling_group = parser.add_argument_group('Sampling Parameters')
    sampling_group.add_argument(
        "--temperature",
        type=float,
        default=1.0,
        help="Temperature for sampling (1.0 = greedy/deterministic)"
    )
    sampling_group.add_argument(
        "--top_k", 
        type=int, 
        default=None,
        help="Top-k filtering: keep only k most likely tokens"
    )
    sampling_group.add_argument(
        "--top_p", 
        type=float, 
        default=None,
        help="Top-p (nucleus) filtering: keep tokens with cumulative probability <= p"
    )
    
    # Visualization
    viz_group = parser.add_argument_group('Visualization')
    viz_group.add_argument(
        "--no_viz",
        action="store_true",
        help="Disable live visualization during generation (requires rich library)"
    )

    # Other settings
    other_group = parser.add_argument_group('Other Settings')
    other_group.add_argument(
        "--seed", 
        type=int, 
        default=12345,
        help="Random seed for reproducibility"
    )

    moe_backend_group = parser.add_argument_group('MoE Backend')
    moe_backend_group.add_argument(
        "--moe_backend",
        type=str,
        default="hf",
        choices=["hf", "flashinfer", "sglang"],
        help="MoE backend to use for sparse mixture of experts layers"
    )
    
    args = parser.parse_args()
    
    if args.temperature < 0:
        parser.error("Temperature must be non-negative")
    if args.top_k is not None and args.top_k <= 0:
        parser.error("Top-k must be positive")
    if args.top_p is not None and (args.top_p <= 0 or args.top_p > 1):
        parser.error("Top-p must be between 0 and 1")
    
    
    print("\n" + "="*60)
    print("RND1 Diffusion Language Model Demo")
    print("="*60)
    print("Configuration:")
    print(f"  Model: {args.model_path}")
    if args.checkpoint:
        print(f"  Checkpoint: {args.checkpoint}")
    print(f"  Device: {args.device}")
    print(f"  Precision: {'FP32' if args.fp32 else 'BF16'}")
    print(f"  Mode: {args.mode.upper()} ({'Q&A format for instructions' if args.mode == 'task' else 'Text continuation'})")
    print(f"  Random seed: {args.seed}")
    print(f"  Diffusion steps: {args.num_steps}")
    print(f"  Max new tokens: {args.max_new_tokens}")
    print(f"  Algorithm: Entropy-based selection")
    print(f"  Temperature: {args.temperature}")
    if args.top_k:
        print(f"  Top-k: {args.top_k}")
    if args.top_p:
        print(f"  Top-p: {args.top_p}")
    print(f"  MoE Backend: {args.moe_backend}")
    print(f"  Visualization: {'Enabled' if not args.no_viz else 'Disabled'}")
    print("="*60 + "\n")

    demo_completion(
        model_path=args.model_path,
        checkpoint_path=args.checkpoint,
        device=args.device,
        use_bfloat16=not args.fp32,
        show_visualization=not args.no_viz,
        num_steps=args.num_steps,
        max_new_tokens=args.max_new_tokens,
        custom_prompt=args.prompt,
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        mask_token_id=args.mask_token_id,
        seed=args.seed,
        moe_backend=args.moe_backend,
        mode=args.mode,
    )


if __name__ == "__main__":
    main()