Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| """ | |
| RND1 Diffusion Model Demo for Hugging Face Spaces with ZeroGPU | |
| """ | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| import random | |
| import numpy as np | |
| from transformers import AutoTokenizer | |
| # Global model and tokenizer | |
| model = None | |
| tokenizer = None | |
| device = "cuda" | |
| def set_seed(seed: int): | |
| """Set random seed for reproducibility.""" | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(seed) | |
| def load_model(): | |
| """Load model and tokenizer (called once at startup).""" | |
| global model, tokenizer | |
| from rnd.configuration_rnd import RND1Config | |
| from rnd.modeling_rnd import RND1LM | |
| model_path = "radicalnumerics/RND1-Base-0910" | |
| print("Loading tokenizer...") | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
| print("Loading model...") | |
| cfg = RND1Config.from_pretrained(model_path) | |
| cfg.model_type = "rnd1" | |
| cfg.attn_implementation = "sdpa" | |
| cfg.moe_backend = "hf" | |
| model = RND1LM.from_pretrained( | |
| model_path, | |
| config=cfg, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| use_safetensors=True, | |
| low_cpu_mem_usage=True, | |
| ) | |
| model.eval() | |
| print("Model loaded successfully!") | |
| # Request GPU for up to 120 seconds | |
| def generate_text( | |
| prompt: str, | |
| mode: str, | |
| num_steps: int, | |
| max_new_tokens: int, | |
| temperature: float, | |
| top_k: int, | |
| top_p: float, | |
| seed: int, | |
| progress=gr.Progress() | |
| ): | |
| """ | |
| Generate text using RND1 diffusion model. | |
| Args: | |
| prompt: Input text prompt | |
| mode: Generation mode ('task' or 'completion') | |
| num_steps: Number of diffusion steps | |
| max_new_tokens: Maximum tokens to generate | |
| temperature: Sampling temperature | |
| top_k: Top-k filtering (0 to disable) | |
| top_p: Top-p nucleus filtering (0 to disable) | |
| seed: Random seed | |
| progress: Gradio progress tracker | |
| """ | |
| if not prompt.strip(): | |
| return "β οΈ Please enter a prompt." | |
| progress(0, desc="Setting seed...") | |
| set_seed(seed) | |
| progress(0.1, desc="Preparing prompt...") | |
| # Format prompt based on mode | |
| if mode == "task": | |
| if not prompt.strip().startswith("Question:"): | |
| formatted_prompt = f"Question: {prompt}\n" | |
| else: | |
| formatted_prompt = prompt | |
| else: | |
| formatted_prompt = prompt | |
| # Tokenize | |
| progress(0.2, desc="Tokenizing...") | |
| inputs = tokenizer(formatted_prompt, return_tensors="pt") | |
| input_ids = inputs.input_ids.to(device) | |
| attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None | |
| # Prepare generation config | |
| from rnd.generation_config import RND1GenerationConfig | |
| greedy = (temperature == 1.0) | |
| gen_config = RND1GenerationConfig( | |
| max_new_tokens=max_new_tokens, | |
| num_diffusion_steps=num_steps, | |
| mask_token_id=151669, | |
| temperature=temperature if not greedy else 1.0, | |
| top_k=top_k if top_k > 0 else None, | |
| top_p=top_p if top_p > 0 else None, | |
| greedy=greedy, | |
| eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else 151645, | |
| pad_token_id=tokenizer.pad_token_id, | |
| bos_token_id=tokenizer.bos_token_id, | |
| ) | |
| # Generate | |
| progress(0.3, desc=f"Generating ({num_steps} diffusion steps)...") | |
| generator = torch.Generator(device=device) | |
| generator.manual_seed(seed) | |
| with torch.no_grad(): | |
| output = model.generate( | |
| inputs=input_ids, | |
| generation_config=gen_config, | |
| generator=generator, | |
| ) | |
| progress(0.9, desc="Decoding...") | |
| # Decode generated tokens | |
| generated_tokens = output[0][len(input_ids[0]):] | |
| generation = tokenizer.decode( | |
| generated_tokens.tolist(), | |
| skip_special_tokens=True | |
| ) | |
| progress(1.0, desc="Complete!") | |
| return generation | |
| # Create Gradio interface | |
| def create_interface(): | |
| with gr.Blocks(title="RND1 Diffusion Language Model", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown(""" | |
| # π RND1 Diffusion Language Model | |
| Generate text using a diffusion-based language model. The model uses iterative denoising | |
| to progressively refine masked tokens into coherent text. | |
| **Note:** First generation may take longer as the model loads. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here...", | |
| lines=4, | |
| value="Write a Python function that finds the longest common subsequence of two strings." | |
| ) | |
| mode = gr.Radio( | |
| choices=["task", "completion"], | |
| value="task", | |
| label="Generation Mode", | |
| info="Task: Q&A format for instructions | Completion: Continue the text" | |
| ) | |
| with gr.Accordion("Generation Settings", open=True): | |
| num_steps = gr.Slider( | |
| minimum=16, | |
| maximum=512, | |
| value=256, | |
| step=16, | |
| label="Diffusion Steps", | |
| info="More steps = better quality but slower" | |
| ) | |
| max_new_tokens = gr.Slider( | |
| minimum=32, | |
| maximum=512, | |
| value=256, | |
| step=32, | |
| label="Max New Tokens" | |
| ) | |
| with gr.Accordion("Sampling Parameters", open=False): | |
| temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1, | |
| label="Temperature", | |
| info="1.0 = greedy/deterministic" | |
| ) | |
| top_k = gr.Slider( | |
| minimum=0, | |
| maximum=100, | |
| value=0, | |
| step=1, | |
| label="Top-K", | |
| info="0 to disable" | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.0, | |
| step=0.05, | |
| label="Top-P (Nucleus)", | |
| info="0 to disable" | |
| ) | |
| seed = gr.Slider( | |
| minimum=0, | |
| maximum=100000, | |
| value=12345, | |
| step=1, | |
| label="Random Seed" | |
| ) | |
| generate_btn = gr.Button("π Generate", variant="primary", size="lg") | |
| with gr.Column(scale=1): | |
| output = gr.Textbox( | |
| label="Generated Text", | |
| lines=20, | |
| show_copy_button=True | |
| ) | |
| gr.Markdown(""" | |
| ### Examples | |
| Try these prompts to see what the model can do! | |
| """) | |
| gr.Examples( | |
| examples=[ | |
| ["Write a Python function that finds the longest common subsequence of two strings.", "task", 256, 256, 1.0, 0, 0.0, 12345], | |
| ["Explain the concept of recursion with a simple example.", "task", 256, 200, 1.0, 0, 0.0, 42], | |
| ["The key to understanding quantum computing lies in", "completion", 256, 256, 1.0, 0, 0.0, 9876], | |
| ["Once upon a time in a distant galaxy,", "completion", 256, 300, 1.0, 0, 0.0, 7777], | |
| ], | |
| inputs=[prompt, mode, num_steps, max_new_tokens, temperature, top_k, top_p, seed], | |
| outputs=output, | |
| fn=generate_text, | |
| cache_examples=False, | |
| ) | |
| generate_btn.click( | |
| fn=generate_text, | |
| inputs=[prompt, mode, num_steps, max_new_tokens, temperature, top_k, top_p, seed], | |
| outputs=output, | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| # Load model at startup | |
| load_model() | |
| # Launch Gradio interface | |
| demo = create_interface() | |
| demo.queue(max_size=10) # Enable queue for ZeroGPU | |
| demo.launch() |