Spaces:
Running
on
T4
Running
on
T4
| import time | |
| import os | |
| import re | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline | |
| from huggingface_hub import model_info | |
| try: | |
| import flash_attn | |
| FLASH_ATTENTION = True | |
| except ImportError: | |
| FLASH_ATTENTION = False | |
| import yt_dlp # Added import for yt-dlp | |
| MODEL_NAME = "NbAiLab/nb-whisper-large" | |
| lang = "no" | |
| logo_path = "/home/angelina/Nedlastinger/Screenshot 2024-10-10 at 13-30-13 Nasjonalbiblioteket — Melkeveien designkontor.png" | |
| share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None | |
| auth_token = os.environ.get("AUTH_TOKEN") or True | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| print(f"Bruker enhet: {device}") | |
| def pipe(file, return_timestamps=False): | |
| asr = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=28, | |
| device=device, | |
| token=auth_token, | |
| torch_dtype=torch.float16, | |
| model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5}, | |
| ) | |
| asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids( | |
| language=lang, | |
| task="transcribe", | |
| no_timestamps=not return_timestamps, | |
| ) | |
| return asr(file, return_timestamps=return_timestamps, batch_size=24) | |
| def format_output(text): | |
| # Add a newline after ".", "!", ":", or "?" unless part of sequences like "..." | |
| text = re.sub(r'(?<!\.)[.!:?](?!\.)', lambda m: m.group() + '\n', text) | |
| # Ensure newline after sequences like "..." or other punctuation patterns | |
| text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '\n\n', text) | |
| return text | |
| def transcribe(file, return_timestamps=False): | |
| if not return_timestamps: | |
| text = pipe(file)["text"] | |
| formatted_text = format_output(text) | |
| else: | |
| chunks = pipe(file, return_timestamps=True)["chunks"] | |
| text = [] | |
| for chunk in chunks: | |
| start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" | |
| end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" | |
| line = f"[{start_time} -> {end_time}] {chunk['text']}" | |
| text.append(line) | |
| formatted_text = "\n".join(text) | |
| formatted_text += "\n\nTranskribert med NB-Whisper demo" | |
| return formatted_text | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def yt_transcribe(yt_url, return_timestamps=False): | |
| html_embed_str = _return_yt_html_embed(yt_url) | |
| ydl_opts = { | |
| 'format': 'bestaudio/best', | |
| 'outtmpl': 'audio.%(ext)s', | |
| 'postprocessors': [{ | |
| 'key': 'FFmpegExtractAudio', | |
| 'preferredcodec': 'mp3', | |
| 'preferredquality': '192', | |
| }], | |
| 'quiet': True, | |
| } | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| ydl.download([yt_url]) | |
| text = transcribe("audio.mp3", return_timestamps=return_timestamps) | |
| return html_embed_str, text | |
| # Lag Gradio-appen uten faner | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Image(value=logo_path, label="Nasjonalbibliotek Logo", elem_id="logo") # No tool parameter for static display | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.components.Audio(sources=['upload', 'microphone'], type="filepath"), | |
| gr.components.Checkbox(label="Inkluder tidsstempler"), | |
| ], | |
| outputs="text", | |
| title="NB-Whisper", | |
| description=( | |
| "Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede" | |
| f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter." | |
| ), | |
| allow_flagging="never", | |
| #show_submit_button=False, | |
| ) | |
| # Uncomment to add the YouTube transcription interface if needed | |
| # yt_transcribe_interface = gr.Interface( | |
| # fn=yt_transcribe, | |
| # inputs=[ | |
| # gr.components.Textbox(lines=1, placeholder="Lim inn URL til en YouTube-video her", label="YouTube URL"), | |
| # gr.components.Checkbox(label="Inkluder tidsstempler"), | |
| # ], | |
| # examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]], | |
| # outputs=["html", "text"], | |
| # title="Whisper Demo: Transkriber YouTube", | |
| # description=( | |
| # "Transkriber lange YouTube-videoer med et enkelt klikk! Demoen bruker den fintunede modellen:" | |
| # f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler av" | |
| # " vilkårlig lengde." | |
| # ), | |
| # allow_flagging="never", | |
| # ) | |
| # Start demoen uten faner | |
| demo.launch(share=share).queue() |