File size: 30,971 Bytes
3e772ec 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 8ba2581 9145e48 3e772ec 9145e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import gradio as gr
import os
import asyncio
import json
import logging
import tempfile
import uuid
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional
import nest_asyncio
# Apply nest_asyncio to handle nested event loops in Gradio
nest_asyncio.apply()
# Import our custom modules
from mcp_tools.ingestion_tool import IngestionTool
from mcp_tools.search_tool import SearchTool
from mcp_tools.generative_tool import GenerativeTool
from services.vector_store_service import VectorStoreService
from services.document_store_service import DocumentStoreService
from services.embedding_service import EmbeddingService
from services.llm_service import LLMService
from services.ocr_service import OCRService
from core.models import SearchResult, Document
import config
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ContentOrganizerMCPServer:
def __init__(self):
# Initialize services
logger.info("Initializing Content Organizer MCP Server...")
self.vector_store = VectorStoreService()
self.document_store = DocumentStoreService()
self.embedding_service = EmbeddingService()
self.llm_service = LLMService()
self.ocr_service = OCRService()
# Initialize tools
self.ingestion_tool = IngestionTool(
vector_store=self.vector_store,
document_store=self.document_store,
embedding_service=self.embedding_service,
ocr_service=self.ocr_service
)
self.search_tool = SearchTool(
vector_store=self.vector_store,
embedding_service=self.embedding_service,
document_store=self.document_store
)
self.generative_tool = GenerativeTool(
llm_service=self.llm_service,
search_tool=self.search_tool
)
# Track processing status
self.processing_status = {}
# Document cache for quick access
self.document_cache = {}
logger.info("Content Organizer MCP Server initialized successfully!")
def run_async(self, coro):
"""Helper to run async functions in Gradio"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
if loop.is_running():
# If loop is already running, create a task
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(asyncio.run, coro)
return future.result()
else:
return loop.run_until_complete(coro)
async def ingest_document_async(self, file_path: str, file_type: str) -> Dict[str, Any]:
"""MCP Tool: Ingest and process a document"""
try:
task_id = str(uuid.uuid4())
self.processing_status[task_id] = {"status": "processing", "progress": 0}
result = await self.ingestion_tool.process_document(file_path, file_type, task_id)
if result.get("success"):
self.processing_status[task_id] = {"status": "completed", "progress": 100}
# Update document cache
doc_id = result.get("document_id")
if doc_id:
doc = await self.document_store.get_document(doc_id)
if doc:
self.document_cache[doc_id] = doc
return result
else:
self.processing_status[task_id] = {"status": "failed", "error": result.get("error")}
return result
except Exception as e:
logger.error(f"Document ingestion failed: {str(e)}")
return {
"success": False,
"error": str(e),
"message": "Failed to process document"
}
async def get_document_content_async(self, document_id: str) -> Optional[str]:
"""Get document content by ID"""
try:
# Check cache first
if document_id in self.document_cache:
return self.document_cache[document_id].content
# Get from store
doc = await self.document_store.get_document(document_id)
if doc:
self.document_cache[document_id] = doc
return doc.content
return None
except Exception as e:
logger.error(f"Error getting document content: {str(e)}")
return None
async def semantic_search_async(self, query: str, top_k: int = 5, filters: Optional[Dict] = None) -> Dict[str, Any]:
"""MCP Tool: Perform semantic search"""
try:
results = await self.search_tool.search(query, top_k, filters)
return {
"success": True,
"query": query,
"results": [result.to_dict() for result in results],
"total_results": len(results)
}
except Exception as e:
logger.error(f"Semantic search failed: {str(e)}")
return {
"success": False,
"error": str(e),
"query": query,
"results": []
}
async def summarize_content_async(self, content: str = None, document_id: str = None, style: str = "concise") -> Dict[str, Any]:
"""MCP Tool: Summarize content or document"""
try:
# If document_id provided, get content from document
if document_id and document_id != "none":
content = await self.get_document_content_async(document_id)
if not content:
return {"success": False, "error": f"Document {document_id} not found"}
if not content or not content.strip():
return {"success": False, "error": "No content provided for summarization"}
# Truncate content if too long (for API limits)
max_content_length = 4000
if len(content) > max_content_length:
content = content[:max_content_length] + "..."
summary = await self.generative_tool.summarize(content, style)
return {
"success": True,
"summary": summary,
"original_length": len(content),
"summary_length": len(summary),
"style": style,
"document_id": document_id
}
except Exception as e:
logger.error(f"Summarization failed: {str(e)}")
return {
"success": False,
"error": str(e)
}
async def generate_tags_async(self, content: str = None, document_id: str = None, max_tags: int = 5) -> Dict[str, Any]:
"""MCP Tool: Generate tags for content"""
try:
# If document_id provided, get content from document
if document_id and document_id != "none":
content = await self.get_document_content_async(document_id)
if not content:
return {"success": False, "error": f"Document {document_id} not found"}
if not content or not content.strip():
return {"success": False, "error": "No content provided for tag generation"}
tags = await self.generative_tool.generate_tags(content, max_tags)
# Update document tags if document_id provided
if document_id and document_id != "none" and tags:
await self.document_store.update_document_metadata(document_id, {"tags": tags})
return {
"success": True,
"tags": tags,
"content_length": len(content),
"document_id": document_id
}
except Exception as e:
logger.error(f"Tag generation failed: {str(e)}")
return {
"success": False,
"error": str(e)
}
async def answer_question_async(self, question: str, context_filter: Optional[Dict] = None) -> Dict[str, Any]:
"""MCP Tool: Answer questions using RAG"""
try:
# Search for relevant context
search_results = await self.search_tool.search(question, top_k=5, filters=context_filter)
if not search_results:
return {
"success": False,
"error": "No relevant context found in your documents. Please make sure you have uploaded relevant documents.",
"question": question
}
# Generate answer using context
answer = await self.generative_tool.answer_question(question, search_results)
return {
"success": True,
"question": question,
"answer": answer,
"sources": [result.to_dict() for result in search_results],
"confidence": "high" if len(search_results) >= 3 else "medium"
}
except Exception as e:
logger.error(f"Question answering failed: {str(e)}")
return {
"success": False,
"error": str(e),
"question": question
}
def list_documents_sync(self, limit: int = 100, offset: int = 0) -> Dict[str, Any]:
"""List stored documents"""
try:
documents = self.run_async(self.document_store.list_documents(limit, offset))
return {
"success": True,
"documents": [doc.to_dict() for doc in documents],
"total": len(documents)
}
except Exception as e:
return {
"success": False,
"error": str(e)
}
# Initialize the MCP server
mcp_server = ContentOrganizerMCPServer()
# Helper functions
def get_document_list():
"""Get list of documents for display"""
try:
result = mcp_server.list_documents_sync(limit=100)
if result["success"]:
if result["documents"]:
doc_list = "π Documents in Library:\n\n"
for i, doc in enumerate(result["documents"], 1):
doc_list += f"{i}. {doc['filename']} (ID: {doc['id'][:8]}...)\n"
doc_list += f" Type: {doc['doc_type']}, Size: {doc['file_size']} bytes\n"
if doc.get('tags'):
doc_list += f" Tags: {', '.join(doc['tags'])}\n"
doc_list += f" Created: {doc['created_at'][:10]}\n\n"
return doc_list
else:
return "No documents in library yet. Upload some documents to get started!"
else:
return f"Error loading documents: {result['error']}"
except Exception as e:
return f"Error: {str(e)}"
def get_document_choices():
"""Get document choices for dropdown"""
try:
result = mcp_server.list_documents_sync(limit=100)
if result["success"] and result["documents"]:
choices = []
for doc in result["documents"]:
# Create label with filename and shortened ID
choice_label = f"{doc['filename']} ({doc['id'][:8]}...)"
# Use full document ID as the value
choices.append((choice_label, doc['id']))
logger.info(f"Generated {len(choices)} document choices")
return choices
return []
except Exception as e:
logger.error(f"Error getting document choices: {str(e)}")
return []
# Gradio Interface Functions
def upload_and_process_file(file):
"""Gradio interface for file upload"""
if file is None:
return "No file uploaded", "", get_document_list(), gr.update(choices=get_document_choices())
try:
# Get file path
file_path = file.name if hasattr(file, 'name') else str(file)
file_type = Path(file_path).suffix.lower()
logger.info(f"Processing file: {file_path}")
# Process document
result = mcp_server.run_async(mcp_server.ingest_document_async(file_path, file_type))
if result["success"]:
# Get updated document list and choices
doc_list = get_document_list()
doc_choices = get_document_choices()
return (
f"β
Success: {result['message']}\nDocument ID: {result['document_id']}\nChunks created: {result['chunks_created']}",
result["document_id"],
doc_list,
gr.update(choices=doc_choices),
gr.update(choices=doc_choices),
gr.update(choices=doc_choices)
)
else:
return (
f"β Error: {result.get('error', 'Unknown error')}",
"",
get_document_list(),
gr.update(choices=get_document_choices()),
gr.update(choices=get_document_choices()),
gr.update(choices=get_document_choices())
)
except Exception as e:
logger.error(f"Error processing file: {str(e)}")
return (
f"β Error: {str(e)}",
"",
get_document_list(),
gr.update(choices=get_document_choices()),
gr.update(choices=get_document_choices()),
gr.update(choices=get_document_choices())
)
def perform_search(query, top_k):
"""Gradio interface for search"""
if not query.strip():
return "Please enter a search query"
try:
result = mcp_server.run_async(mcp_server.semantic_search_async(query, int(top_k)))
if result["success"]:
if result["results"]:
output = f"π Found {result['total_results']} results for: '{query}'\n\n"
for i, res in enumerate(result["results"], 1):
output += f"Result {i}:\n"
output += f"π Relevance Score: {res['score']:.3f}\n"
output += f"π Content: {res['content'][:300]}...\n"
if 'document_filename' in res.get('metadata', {}):
output += f"π Source: {res['metadata']['document_filename']}\n"
output += f"π Document ID: {res.get('document_id', 'Unknown')}\n"
output += "-" * 80 + "\n\n"
return output
else:
return f"No results found for: '{query}'\n\nMake sure you have uploaded relevant documents first."
else:
return f"β Search failed: {result['error']}"
except Exception as e:
logger.error(f"Search error: {str(e)}")
return f"β Error: {str(e)}"
def summarize_document(doc_choice, custom_text, style):
"""Gradio interface for summarization"""
try:
# Debug logging
logger.info(f"Summarize called with doc_choice: {doc_choice}, type: {type(doc_choice)}")
# Get document ID from dropdown choice
document_id = None
if doc_choice and doc_choice != "none" and doc_choice != "":
# When Gradio dropdown returns a choice, it returns the value part of the (label, value) tuple
document_id = doc_choice
logger.info(f"Using document ID: {document_id}")
# Use custom text if provided, otherwise use document
if custom_text and custom_text.strip():
logger.info("Using custom text for summarization")
result = mcp_server.run_async(mcp_server.summarize_content_async(content=custom_text, style=style))
elif document_id:
logger.info(f"Summarizing document: {document_id}")
result = mcp_server.run_async(mcp_server.summarize_content_async(document_id=document_id, style=style))
else:
return "Please select a document from the dropdown or enter text to summarize"
if result["success"]:
output = f"π Summary ({style} style):\n\n{result['summary']}\n\n"
output += f"π Statistics:\n"
output += f"- Original length: {result['original_length']} characters\n"
output += f"- Summary length: {result['summary_length']} characters\n"
output += f"- Compression ratio: {(1 - result['summary_length']/result['original_length'])*100:.1f}%\n"
if result.get('document_id'):
output += f"- Document ID: {result['document_id']}\n"
return output
else:
return f"β Summarization failed: {result['error']}"
except Exception as e:
logger.error(f"Summarization error: {str(e)}")
return f"β Error: {str(e)}"
def generate_tags_for_document(doc_choice, custom_text, max_tags):
"""Gradio interface for tag generation"""
try:
# Debug logging
logger.info(f"Generate tags called with doc_choice: {doc_choice}, type: {type(doc_choice)}")
# Get document ID from dropdown choice
document_id = None
if doc_choice and doc_choice != "none" and doc_choice != "":
# When Gradio dropdown returns a choice, it returns the value part of the (label, value) tuple
document_id = doc_choice
logger.info(f"Using document ID: {document_id}")
# Use custom text if provided, otherwise use document
if custom_text and custom_text.strip():
logger.info("Using custom text for tag generation")
result = mcp_server.run_async(mcp_server.generate_tags_async(content=custom_text, max_tags=int(max_tags)))
elif document_id:
logger.info(f"Generating tags for document: {document_id}")
result = mcp_server.run_async(mcp_server.generate_tags_async(document_id=document_id, max_tags=int(max_tags)))
else:
return "Please select a document from the dropdown or enter text to generate tags"
if result["success"]:
tags_str = ", ".join(result["tags"])
output = f"π·οΈ Generated Tags:\n\n{tags_str}\n\n"
output += f"π Statistics:\n"
output += f"- Content length: {result['content_length']} characters\n"
output += f"- Number of tags: {len(result['tags'])}\n"
if result.get('document_id'):
output += f"- Document ID: {result['document_id']}\n"
output += f"\nβ
Tags have been saved to the document."
return output
else:
return f"β Tag generation failed: {result['error']}"
except Exception as e:
logger.error(f"Tag generation error: {str(e)}")
return f"β Error: {str(e)}"
def ask_question(question):
"""Gradio interface for Q&A"""
if not question.strip():
return "Please enter a question"
try:
result = mcp_server.run_async(mcp_server.answer_question_async(question))
if result["success"]:
output = f"β Question: {result['question']}\n\n"
output += f"π‘ Answer:\n{result['answer']}\n\n"
output += f"π― Confidence: {result['confidence']}\n\n"
output += f"π Sources Used ({len(result['sources'])}):\n"
for i, source in enumerate(result['sources'], 1):
filename = source.get('metadata', {}).get('document_filename', 'Unknown')
output += f"\n{i}. π {filename}\n"
output += f" π Excerpt: {source['content'][:150]}...\n"
output += f" π Relevance: {source['score']:.3f}\n"
return output
else:
return f"β {result.get('error', 'Failed to answer question')}"
except Exception as e:
return f"β Error: {str(e)}"
# Create Gradio Interface
def create_gradio_interface():
with gr.Blocks(title="π§ Intelligent Content Organizer MCP Agent", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# π§ Intelligent Content Organizer MCP Agent
A powerful MCP (Model Context Protocol) server for intelligent content management with semantic search,
summarization, and Q&A capabilities powered by Anthropic Claude and Mistral AI.
## π Quick Start:
1. **Upload Documents** β Go to "π Upload Documents" tab
2. **Search Your Content** β Use "π Search Documents" to find information
3. **Get Summaries** β Select any document in "π Summarize" tab
4. **Ask Questions** β Get answers from your documents in "β Ask Questions" tab
""")
# Shared components for document selection
doc_choices = gr.State(get_document_choices())
with gr.Tabs():
# Document Library Tab
with gr.Tab("π Document Library"):
with gr.Row():
with gr.Column():
gr.Markdown("### Your Document Collection")
document_list = gr.Textbox(
label="Documents in Library",
value=get_document_list(),
lines=20,
interactive=False
)
refresh_btn = gr.Button("π Refresh Library", variant="secondary")
refresh_btn.click(
fn=get_document_list,
outputs=[document_list]
)
# Document Ingestion Tab
with gr.Tab("π Upload Documents"):
with gr.Row():
with gr.Column():
gr.Markdown("### Add Documents to Your Library")
file_input = gr.File(
label="Select Document to Upload",
file_types=[".pdf", ".txt", ".docx", ".png", ".jpg", ".jpeg"],
type="filepath"
)
upload_btn = gr.Button("π Process & Add to Library", variant="primary", size="lg")
with gr.Column():
upload_output = gr.Textbox(
label="Processing Result",
lines=6,
placeholder="Upload a document to see processing results..."
)
doc_id_output = gr.Textbox(
label="Document ID",
placeholder="Document ID will appear here after processing..."
)
# Hidden dropdowns for updating
doc_dropdown_sum = gr.Dropdown(label="Hidden", visible=False)
doc_dropdown_tag = gr.Dropdown(label="Hidden", visible=False)
upload_btn.click(
upload_and_process_file,
inputs=[file_input],
outputs=[upload_output, doc_id_output, document_list, doc_dropdown_sum, doc_dropdown_tag, doc_choices]
)
# Semantic Search Tab
with gr.Tab("π Search Documents"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Search Your Document Library")
search_query = gr.Textbox(
label="What are you looking for?",
placeholder="Enter your search query... (e.g., 'machine learning algorithms', 'quarterly revenue', 'project timeline')",
lines=2
)
search_top_k = gr.Slider(
label="Number of Results",
minimum=1,
maximum=20,
value=5,
step=1
)
search_btn = gr.Button("π Search Library", variant="primary", size="lg")
with gr.Column(scale=2):
search_output = gr.Textbox(
label="Search Results",
lines=20,
placeholder="Search results will appear here..."
)
search_btn.click(
perform_search,
inputs=[search_query, search_top_k],
outputs=[search_output]
)
# Summarization Tab
with gr.Tab("π Summarize"):
with gr.Row():
with gr.Column():
gr.Markdown("### Generate Document Summaries")
with gr.Tab("From Library"):
doc_dropdown_sum = gr.Dropdown(
label="Select Document to Summarize",
choices=get_document_choices(),
value=None,
interactive=True,
allow_custom_value=False
)
with gr.Tab("Custom Text"):
summary_text = gr.Textbox(
label="Or Paste Text to Summarize",
placeholder="Paste any text here to summarize...",
lines=8
)
summary_style = gr.Dropdown(
label="Summary Style",
choices=["concise", "detailed", "bullet_points", "executive"],
value="concise",
info="Choose how you want the summary formatted"
)
summarize_btn = gr.Button("π Generate Summary", variant="primary", size="lg")
with gr.Column():
summary_output = gr.Textbox(
label="Generated Summary",
lines=20,
placeholder="Summary will appear here..."
)
summarize_btn.click(
summarize_document,
inputs=[doc_dropdown_sum, summary_text, summary_style],
outputs=[summary_output]
)
# Tag Generation Tab
with gr.Tab("π·οΈ Generate Tags"):
with gr.Row():
with gr.Column():
gr.Markdown("### Auto-Generate Document Tags")
with gr.Tab("From Library"):
doc_dropdown_tag = gr.Dropdown(
label="Select Document to Tag",
choices=get_document_choices(),
value=None,
interactive=True,
allow_custom_value=False
)
with gr.Tab("Custom Text"):
tag_text = gr.Textbox(
label="Or Paste Text to Generate Tags",
placeholder="Paste any text here to generate tags...",
lines=8
)
max_tags = gr.Slider(
label="Number of Tags",
minimum=3,
maximum=15,
value=5,
step=1
)
tag_btn = gr.Button("π·οΈ Generate Tags", variant="primary", size="lg")
with gr.Column():
tag_output = gr.Textbox(
label="Generated Tags",
lines=10,
placeholder="Tags will appear here..."
)
tag_btn.click(
generate_tags_for_document,
inputs=[doc_dropdown_tag, tag_text, max_tags],
outputs=[tag_output]
)
# Q&A Tab
with gr.Tab("β Ask Questions"):
with gr.Row():
with gr.Column():
gr.Markdown("""
### Ask Questions About Your Documents
The AI will search through all your uploaded documents to find relevant information
and provide comprehensive answers with sources.
""")
qa_question = gr.Textbox(
label="Your Question",
placeholder="Ask anything about your documents... (e.g., 'What are the key findings about renewable energy?', 'How much was spent on marketing last quarter?')",
lines=3
)
qa_btn = gr.Button("β Get Answer", variant="primary", size="lg")
with gr.Column():
qa_output = gr.Textbox(
label="AI Answer",
lines=20,
placeholder="Answer will appear here with sources..."
)
qa_btn.click(
ask_question,
inputs=[qa_question],
outputs=[qa_output]
)
# Auto-refresh document lists when switching tabs
interface.load(
fn=lambda: (get_document_list(), get_document_choices(), get_document_choices()),
outputs=[document_list, doc_dropdown_sum, doc_dropdown_tag]
)
return interface
# Create and launch the interface
if __name__ == "__main__":
interface = create_gradio_interface()
# Launch with proper configuration for Hugging Face Spaces
interface.launch(mcp_server=True) |