Spaces:
Runtime error
Runtime error
try fix running in hf.co
Browse files
app.py
CHANGED
|
@@ -61,9 +61,10 @@ def download_dataset():
|
|
| 61 |
|
| 62 |
@st.cache
|
| 63 |
def load_dataset(feature_set: str):
|
| 64 |
-
|
|
|
|
| 65 |
# read the feature metadata and get a feature set (or all the features)
|
| 66 |
-
with open("
|
| 67 |
feature_metadata = json.load(f)
|
| 68 |
# features = list(feature_metadata["feature_stats"].keys()) # get all the features
|
| 69 |
# features = feature_metadata["feature_sets"]["small"] # get the small
|
|
@@ -75,9 +76,9 @@ def load_dataset(feature_set: str):
|
|
| 75 |
# note: sometimes when trying to read the downloaded data you get an error about invalid magic parquet bytes...
|
| 76 |
# if so, delete the file and rerun the napi.download_dataset to fix the
|
| 77 |
# corrupted file
|
| 78 |
-
training_data = pd.read_parquet('
|
| 79 |
columns=read_columns)
|
| 80 |
-
validation_data = pd.read_parquet('
|
| 81 |
columns=read_columns)
|
| 82 |
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet',
|
| 83 |
columns=read_columns)
|
|
@@ -215,7 +216,7 @@ def get_model_preds(model_name, *params):
|
|
| 215 |
validation_data["prediction"].to_csv(validation_prediction_fname)
|
| 216 |
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv")
|
| 217 |
|
| 218 |
-
validation_preds = pd.read_parquet('
|
| 219 |
validation_data[EXAMPLE_PREDS_COL] = validation_preds["prediction"]
|
| 220 |
|
| 221 |
# get some stats about each of our models to compare...
|
|
|
|
| 61 |
|
| 62 |
@st.cache
|
| 63 |
def load_dataset(feature_set: str):
|
| 64 |
+
dataset_path = get_dataset_path()
|
| 65 |
+
print(f'load_dataset with feature_set {feature_set} and path {dataset_path}')
|
| 66 |
# read the feature metadata and get a feature set (or all the features)
|
| 67 |
+
with open(f"{dataset_path}/features.json", "r") as f:
|
| 68 |
feature_metadata = json.load(f)
|
| 69 |
# features = list(feature_metadata["feature_stats"].keys()) # get all the features
|
| 70 |
# features = feature_metadata["feature_sets"]["small"] # get the small
|
|
|
|
| 76 |
# note: sometimes when trying to read the downloaded data you get an error about invalid magic parquet bytes...
|
| 77 |
# if so, delete the file and rerun the napi.download_dataset to fix the
|
| 78 |
# corrupted file
|
| 79 |
+
training_data = pd.read_parquet(f'{dataset_path}/train.parquet',
|
| 80 |
columns=read_columns)
|
| 81 |
+
validation_data = pd.read_parquet(f'{dataset_path}/validation.parquet',
|
| 82 |
columns=read_columns)
|
| 83 |
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet',
|
| 84 |
columns=read_columns)
|
|
|
|
| 216 |
validation_data["prediction"].to_csv(validation_prediction_fname)
|
| 217 |
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv")
|
| 218 |
|
| 219 |
+
validation_preds = pd.read_parquet(f'{get_dataset_path()}/validation_example_preds.parquet')
|
| 220 |
validation_data[EXAMPLE_PREDS_COL] = validation_preds["prediction"]
|
| 221 |
|
| 222 |
# get some stats about each of our models to compare...
|