Spaces:
Running
Running
| import os | |
| os.system('cd fairseq;' | |
| 'pip install ./; cd ..') | |
| os.system('ls -l') | |
| import torch | |
| import numpy as np | |
| import re | |
| from fairseq import utils,tasks | |
| from fairseq import checkpoint_utils | |
| from fairseq import distributed_utils, options, tasks, utils | |
| from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
| from utils.zero_shot_utils import zero_shot_step | |
| from tasks.mm_tasks.vqa_gen import VqaGenTask | |
| from models.ofa import OFAModel | |
| from PIL import Image | |
| from torchvision import transforms | |
| import gradio as gr | |
| # Register VQA task | |
| tasks.register_task('vqa_gen',VqaGenTask) | |
| # turn on cuda if GPU is available | |
| use_cuda = torch.cuda.is_available() | |
| # use fp16 only when GPU is available | |
| use_fp16 = False | |
| os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/ofa_large_384.pt; ' | |
| 'mkdir -p checkpoints; mv ofa_large_384.pt checkpoints/ofa_large_384.pt') | |
| # specify some options for evaluation | |
| parser = options.get_generation_parser() | |
| input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", "--path=checkpoints/ofa_large_384.pt", "--bpe-dir=utils/BPE"] | |
| args = options.parse_args_and_arch(parser, input_args) | |
| cfg = convert_namespace_to_omegaconf(args) | |
| # Load pretrained ckpt & config | |
| task = tasks.setup_task(cfg.task) | |
| models, cfg = checkpoint_utils.load_model_ensemble( | |
| utils.split_paths(cfg.common_eval.path), | |
| task=task | |
| ) | |
| # Move models to GPU | |
| for model in models: | |
| model.eval() | |
| if use_fp16: | |
| model.half() | |
| if use_cuda and not cfg.distributed_training.pipeline_model_parallel: | |
| model.cuda() | |
| model.prepare_for_inference_(cfg) | |
| # Initialize generator | |
| generator = task.build_generator(models, cfg.generation) | |
| # Image transform | |
| from torchvision import transforms | |
| mean = [0.5, 0.5, 0.5] | |
| std = [0.5, 0.5, 0.5] | |
| patch_resize_transform = transforms.Compose([ | |
| lambda image: image.convert("RGB"), | |
| transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=mean, std=std), | |
| ]) | |
| # Text preprocess | |
| bos_item = torch.LongTensor([task.src_dict.bos()]) | |
| eos_item = torch.LongTensor([task.src_dict.eos()]) | |
| pad_idx = task.src_dict.pad() | |
| # Normalize the question | |
| def pre_question(question, max_ques_words): | |
| question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ') | |
| question = re.sub( | |
| r"\s{2,}", | |
| ' ', | |
| question, | |
| ) | |
| question = question.rstrip('\n') | |
| question = question.strip(' ') | |
| # truncate question | |
| question_words = question.split(' ') | |
| if len(question_words) > max_ques_words: | |
| question = ' '.join(question_words[:max_ques_words]) | |
| return question | |
| def encode_text(text, length=None, append_bos=False, append_eos=False): | |
| s = task.tgt_dict.encode_line( | |
| line=task.bpe.encode(text), | |
| add_if_not_exist=False, | |
| append_eos=False | |
| ).long() | |
| if length is not None: | |
| s = s[:length] | |
| if append_bos: | |
| s = torch.cat([bos_item, s]) | |
| if append_eos: | |
| s = torch.cat([s, eos_item]) | |
| return s | |
| # Construct input for open-domain VQA task | |
| def construct_sample(image: Image, question: str): | |
| patch_image = patch_resize_transform(image).unsqueeze(0) | |
| patch_mask = torch.tensor([True]) | |
| question = pre_question(question, task.cfg.max_src_length) | |
| question = question + '?' if not question.endswith('?') else question | |
| src_text = encode_text(' {}'.format(question), append_bos=True, append_eos=True).unsqueeze(0) | |
| src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text]) | |
| ref_dict = np.array([{'yes': 1.0}]) # just placeholder | |
| sample = { | |
| "id":np.array(['42']), | |
| "net_input": { | |
| "src_tokens": src_text, | |
| "src_lengths": src_length, | |
| "patch_images": patch_image, | |
| "patch_masks": patch_mask, | |
| }, | |
| "ref_dict": ref_dict, | |
| } | |
| return sample | |
| # Function to turn FP32 to FP16 | |
| def apply_half(t): | |
| if t.dtype is torch.float32: | |
| return t.to(dtype=torch.half) | |
| return t | |
| # Function for image captioning | |
| def open_domain_vqa(Image, Question): | |
| sample = construct_sample(Image, Question) | |
| sample = utils.move_to_cuda(sample) if use_cuda else sample | |
| sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample | |
| # Run eval step for open-domain VQA | |
| with torch.no_grad(): | |
| result, scores = zero_shot_step(task, generator, models, sample) | |
| return result[0]['answer'] | |
| title = "OFA-Visual_Question_Answering" | |
| description = "Gradio Demo for OFA-Visual_Question_Answering. Upload your own image (high-resolution images are recommended) or click any one of the examples, and click " \ | |
| "\"Submit\" and then wait for OFA's answer. " | |
| article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \ | |
| "Repo</a></p> " | |
| examples = [['cat-4894153_1920.jpg', 'where are the cats?'], ['men-6245003_1920.jpg', 'how many people are in the image?'], ['labrador-retriever-7004193_1920.jpg', 'what breed is the dog in the picture?'], ['Starry_Night.jpeg', 'what style does the picture belong to?']] | |
| io = gr.Interface(fn=open_domain_vqa, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=gr.outputs.Textbox(label="Answer"), | |
| title=title, description=description, article=article, examples=examples, | |
| allow_flagging=False, allow_screenshot=False) | |
| io.launch() |