Perunio commited on
Commit
e49b23b
·
1 Parent(s): 88d38eb

updated model

Browse files
dataset/__init__.py CHANGED
File without changes
dataset/ogbn_link_pred_dataset.py CHANGED
@@ -1,9 +1,11 @@
1
  import os
 
 
 
2
  import pandas as pd
3
  import torch
4
  from ogb.nodeproppred import PygNodePropPredDataset
5
  from torch_geometric.transforms import RandomLinkSplit
6
- from torch_geometric.loader import LinkNeighborLoader
7
  from torch_geometric.data import Data
8
 
9
  import requests
@@ -23,9 +25,8 @@ class OGBNLinkPredDataset:
23
  self._download_abstracts()
24
  self.corpus = self._load_corpus()
25
 
26
- self.train_data, self.val_data, self.test_data = self._split_data(
27
- val_size, test_size
28
- )
29
 
30
  def _download_abstracts(self):
31
  target_dir = os.path.join(self.root, "mapping")
@@ -38,22 +39,17 @@ class OGBNLinkPredDataset:
38
  os.makedirs(target_dir, exist_ok=True)
39
 
40
  try:
41
- print(f"Downloading from {url}...")
42
  response = requests.get(url, stream=True)
43
  response.raise_for_status()
44
  with open(gz_path, "wb") as f:
45
  for chunk in response.iter_content(chunk_size=8192):
46
  f.write(chunk)
47
- print(f"File downloaded to: {gz_path}")
48
 
49
- print(f"Decompressing {gz_path}...")
50
- with gzip.open(gz_path, 'rb') as f_in:
51
- with open(tsv_path, 'wb') as f_out:
52
  shutil.copyfileobj(f_in, f_out)
53
- print(f"File extracted to: {tsv_path}")
54
 
55
  os.remove(gz_path)
56
- print(f"Removed temporary file: {gz_path}")
57
 
58
  except requests.exceptions.RequestException as e:
59
  print(f"Error downloading file: {e}")
@@ -80,22 +76,226 @@ class OGBNLinkPredDataset:
80
  + "\n "
81
  + df_text_aligned["abstract"].fillna("")
82
  ).tolist()
83
- print(f"Corpus created with {len(corpus)} documents.")
84
  return corpus
85
  except FileNotFoundError:
86
  print("Error: titleabs.tsv not found. Could not create corpus.")
87
  return []
88
 
89
- def _split_data(self, val_size: float, test_size: float) -> tuple[Data, Data, Data]:
90
  transform = RandomLinkSplit(
91
- num_val=val_size,
92
- num_test=test_size,
93
  is_undirected=False,
94
- add_negative_train_samples=False,
 
95
  )
96
  train_split, val_split, test_split = transform(self.data)
97
- print("Data successfully split into train, validation, and test sets.")
98
  return train_split, val_split, test_split
99
 
 
 
 
 
 
 
 
 
 
 
100
  def get_splits(self) -> tuple[Data, Data, Data]:
101
- return self.train_data, self.val_data, self.test_data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import torch.nn.functional as F
3
+ import random
4
+ from torch_sparse import SparseTensor
5
  import pandas as pd
6
  import torch
7
  from ogb.nodeproppred import PygNodePropPredDataset
8
  from torch_geometric.transforms import RandomLinkSplit
 
9
  from torch_geometric.data import Data
10
 
11
  import requests
 
25
  self._download_abstracts()
26
  self.corpus = self._load_corpus()
27
 
28
+ self.val_size = val_size
29
+ self.test_size = test_size
 
30
 
31
  def _download_abstracts(self):
32
  target_dir = os.path.join(self.root, "mapping")
 
39
  os.makedirs(target_dir, exist_ok=True)
40
 
41
  try:
 
42
  response = requests.get(url, stream=True)
43
  response.raise_for_status()
44
  with open(gz_path, "wb") as f:
45
  for chunk in response.iter_content(chunk_size=8192):
46
  f.write(chunk)
 
47
 
48
+ with gzip.open(gz_path, "rb") as f_in:
49
+ with open(tsv_path, "wb") as f_out:
 
50
  shutil.copyfileobj(f_in, f_out)
 
51
 
52
  os.remove(gz_path)
 
53
 
54
  except requests.exceptions.RequestException as e:
55
  print(f"Error downloading file: {e}")
 
76
  + "\n "
77
  + df_text_aligned["abstract"].fillna("")
78
  ).tolist()
 
79
  return corpus
80
  except FileNotFoundError:
81
  print("Error: titleabs.tsv not found. Could not create corpus.")
82
  return []
83
 
84
+ def get_splits(self) -> tuple[Data, Data, Data]:
85
  transform = RandomLinkSplit(
86
+ num_val=self.val_size,
87
+ num_test=self.test_size,
88
  is_undirected=False,
89
+ add_negative_train_samples=True,
90
+ neg_sampling_ratio=1.0,
91
  )
92
  train_split, val_split, test_split = transform(self.data)
 
93
  return train_split, val_split, test_split
94
 
95
+
96
+ class OGBNLinkPredNegDataset(OGBNLinkPredDataset):
97
+ """Degree similar hard negatives sampling"""
98
+
99
+ def __init__(
100
+ self, root_dir: str = "data", val_size: float = 0.1, test_size: float = 0.2
101
+ ):
102
+ super().__init__(root_dir, val_size, test_size)
103
+ self.degree_tol = 0
104
+
105
  def get_splits(self) -> tuple[Data, Data, Data]:
106
+ transform = RandomLinkSplit(
107
+ num_val=self.val_size,
108
+ num_test=self.test_size,
109
+ is_undirected=False,
110
+ add_negative_train_samples=False,
111
+ neg_sampling_ratio=0.0,
112
+ )
113
+ train_split, val_split, test_split = transform(self.data)
114
+
115
+ print("Generating hard negatives...")
116
+ adj_matrix = SparseTensor.from_edge_index(
117
+ train_split.edge_index, # only from train_split
118
+ sparse_sizes=(self.data.num_nodes, self.data.num_nodes),
119
+ )
120
+ self.degrees = adj_matrix.sum(dim=0).to(torch.long)
121
+ # to prevent creating negative edges that are positive in other split
122
+ self.all_edge_set = set(zip(*self.data.edge_index.tolist()))
123
+ train_split = self._add_balanced_negs(train_split)
124
+ val_split = self._add_balanced_negs(val_split)
125
+ test_split = self._add_balanced_negs(test_split)
126
+ return train_split, val_split, test_split
127
+
128
+ def _add_balanced_negs(self, split_data):
129
+ assert (split_data.edge_label == 1).all(), "Expected only positive edges"
130
+
131
+ pos_edges = split_data.edge_label_index
132
+ pos_list = pos_edges.t().tolist()
133
+ num_negs = pos_edges.size(1)
134
+
135
+ negs = []
136
+ for _ in range(num_negs):
137
+ u, v_orig = random.choice(pos_list)
138
+ target_deg = int(self.degrees[v_orig])
139
+
140
+ found = False
141
+ for _ in range(20):
142
+ w = random.randrange(self.data.num_nodes)
143
+ if (
144
+ (u, w) not in self.all_edge_set
145
+ and w != u
146
+ and abs(int(self.degrees[w]) - target_deg) <= self.degree_tol
147
+ ):
148
+ negs.append((u, w))
149
+ found = True
150
+ break
151
+
152
+ if not found:
153
+ while True:
154
+ w = random.randrange(self.data.num_nodes)
155
+ if (u, w) not in self.all_edge_set and w != u:
156
+ negs.append((u, w))
157
+ break
158
+
159
+ neg_edges = torch.tensor(negs, dtype=torch.long).t()
160
+ N = pos_edges.size(1)
161
+
162
+ split_data.edge_label_index = torch.cat([pos_edges, neg_edges], dim=1)
163
+ split_data.edge_label = torch.cat(
164
+ [
165
+ torch.ones(N, dtype=torch.long, device=pos_edges.device),
166
+ torch.zeros(N, dtype=torch.long, device=pos_edges.device),
167
+ ]
168
+ )
169
+
170
+ return split_data
171
+
172
+
173
+ # class OGBNLinkPredNegDataset2(OGBNLinkPredDataset):
174
+ # """Degree and semantically similar hard negatives sampling"""
175
+ #
176
+ # def __init__(self, root_dir="data", val_size=0.1, test_size=0.2):
177
+ # super().__init__(root_dir, val_size, test_size)
178
+ #
179
+ # def get_splits(self) -> tuple[Data, Data, Data]:
180
+ # transform = RandomLinkSplit(
181
+ # num_val=self.val_size,
182
+ # num_test=self.test_size,
183
+ # is_undirected=False,
184
+ # add_negative_train_samples=False,
185
+ # neg_sampling_ratio=0.0,
186
+ # )
187
+ # train_split, val_split, test_split = transform(self.data)
188
+ #
189
+ # print("Generating semantic hard negatives...")
190
+ # train_split = self._add_balanced_negs(train_split)
191
+ # val_split = self._add_balanced_negs(val_split)
192
+ # test_split = self._add_balanced_negs(test_split)
193
+ # return train_split, val_split, test_split
194
+ #
195
+ # def _add_balanced_negs(self, split_data):
196
+ # assert (split_data.edge_label == 1).all(), "Expected only positive edges"
197
+ #
198
+ # BS = 1_000
199
+ # B = self.data.x.to("cuda", dtype=torch.bfloat16) # (num_nodes, dim)
200
+ # B = F.normalize(B, p=2, dim=1)
201
+ # K = 100
202
+ #
203
+ # pos_edges = split_data.edge_label_index
204
+ # adj_matrix = SparseTensor.from_edge_index(
205
+ # split_data.edge_index,
206
+ # sparse_sizes=(self.data.num_nodes, self.data.num_nodes),
207
+ # )
208
+ # degrees = adj_matrix.sum(dim=0).to("cuda")
209
+ #
210
+ # topk_val = torch.empty((BS, K), dtype=torch.bfloat16, device="cuda")
211
+ # topk_idx = torch.empty((BS, K), dtype=torch.int64, device="cuda")
212
+ #
213
+ # neg_edges = []
214
+ #
215
+ # for i in range(0, pos_edges.shape[1], BS):
216
+ # batch_end = min(i + BS, pos_edges.shape[1])
217
+ # src_idx = pos_edges[0, i:batch_end] # (batch_size,)
218
+ # dst_idx = pos_edges[1, i:batch_end] # (batch_size,)
219
+ #
220
+ # A = B[src_idx] # (batch_size, dim)
221
+ #
222
+ # with torch.autocast("cuda", dtype=torch.bfloat16):
223
+ # sim = torch.mm(A, B.t()) # equivalent to cos-sim
224
+ #
225
+ # # mask for similarity with itself and existing edges
226
+ # sim[torch.arange(len(A)), dst_idx] = -1
227
+ # sim[torch.arange(len(A)), src_idx] = -1
228
+ # # TODO: exclude edges from val&test sets
229
+ #
230
+ # torch.topk(sim, K, out=(topk_val, topk_idx))
231
+ # topk_idx2 = topk_idx[: len(A)]
232
+ #
233
+ # # sample degree matched negs
234
+ # topk_deg = degrees[topk_idx2]
235
+ # src_deg = degrees[src_idx]
236
+ #
237
+ # deg_diffs = torch.abs(topk_deg - src_deg.unsqueeze(1))
238
+ # closest_idx = torch.argmin(deg_diffs, dim=1) # (batch_size,)
239
+ # sampled_negs = topk_idx[
240
+ # torch.arange(len(A), device="cuda"), closest_idx
241
+ # ]
242
+ # neg_edges.append(sampled_negs)
243
+ #
244
+ # neg_dsts = torch.cat(neg_edges, dim=0).to("cpu")
245
+ # neg_edge_index = torch.stack([pos_edges[0].cpu(), neg_dsts], dim=0)
246
+ # edge_label_index = torch.cat([pos_edges.cpu(), neg_edge_index], dim=1)
247
+ # edge_label = torch.cat(
248
+ # [split_data.edge_label, torch.zeros(neg_dsts.shape[0])], dim=0
249
+ # )
250
+ # assert edge_label.shape[0] == edge_label_index.shape[1], (
251
+ # "Label and index shape mismatch"
252
+ # )
253
+ # assert len(neg_dsts) == pos_edges.shape[1], (
254
+ # "Expected same amount of positive and negative edges"
255
+ # )
256
+ # return Data(
257
+ # x=split_data.x,
258
+ # edge_index=edge_label,
259
+ # edge_label_index=edge_label_index,
260
+ # edge_label=edge_label,
261
+ # )
262
+
263
+
264
+ if __name__ == "__main__":
265
+ dataset = OGBNLinkPredNegDataset()
266
+ train, val, test = dataset.get_splits()
267
+
268
+ def extract_pos_neg_edges(split):
269
+ pos = split.edge_label_index[:, split.edge_label == 1]
270
+ neg = split.edge_label_index[:, split.edge_label == 0]
271
+ return pos, neg
272
+
273
+ for name, split in [("train", train), ("val", val), ("test", test)]:
274
+ assert split.edge_label_index.shape[0] == 2, (
275
+ f"{name}: edge_label_index must have 2 rows"
276
+ )
277
+ assert split.edge_label_index.shape[1] == split.edge_label.shape[0], (
278
+ f"{name}: label/index shape mismatch"
279
+ )
280
+ assert torch.all(0 <= split.edge_label) and torch.all(split.edge_label <= 1), (
281
+ f"{name}: labels not 0/1"
282
+ )
283
+
284
+ pos, neg = extract_pos_neg_edges(split)
285
+ assert pos.size(1) == neg.size(1), f"{name}: pos/neg count mismatch"
286
+
287
+ pos_set = set(tuple(e) for e in pos.t().tolist())
288
+ neg_set = set(tuple(e) for e in neg.t().tolist())
289
+ assert pos_set.isdisjoint(neg_set), f"{name}: pos/neg overlap"
290
+
291
+ assert all(u != v for u, v in pos_set), f"{name}: pos self-loops"
292
+ assert all(u != v for u, v in neg_set), f"{name}: neg self-loops"
293
+
294
+ assert len(pos_set) == pos.size(1), f"{name}: pos duplicates"
295
+ assert len(neg_set) == neg.size(1), f"{name}: neg duplicates"
296
+
297
+ assert pos.size(1) / neg.size(1) == 1.0 if neg.size(1) > 0 else True, (
298
+ f"{name}: ratio not 1.0"
299
+ )
300
+
301
+ print("All asserts passed!")
galis_app.py CHANGED
@@ -1,6 +1,6 @@
1
  from pathlib import Path
2
  import streamlit as st
3
-
4
  from predictor.link_predictor import (
5
  prepare_system,
6
  get_citation_predictions,
@@ -9,7 +9,7 @@ from predictor.link_predictor import (
9
  )
10
  from llm.related_work_generator import generate_related_work
11
 
12
- MODEL_PATH = Path("predictor/model.pth")
13
 
14
 
15
  @st.cache_resource
@@ -94,8 +94,9 @@ def app():
94
  new_vector = abstract_to_vector(
95
  abstract_input, abstract_title, st_model
96
  )
 
97
  probabilities = get_citation_predictions(
98
- vector=new_vector,
99
  model=gcn_model,
100
  z_all=z_all,
101
  num_nodes=dataset.data.num_nodes,
@@ -112,7 +113,9 @@ def app():
112
 
113
  with related_work_placeholder.container():
114
  with st.spinner("Generating related work section..."):
115
- related_work = generate_related_work(st.session_state.references)
 
 
116
  st.session_state.related_work = related_work
117
 
118
  if st.session_state.references:
 
1
  from pathlib import Path
2
  import streamlit as st
3
+ import torch.nn.functional as F
4
  from predictor.link_predictor import (
5
  prepare_system,
6
  get_citation_predictions,
 
9
  )
10
  from llm.related_work_generator import generate_related_work
11
 
12
+ MODEL_PATH = Path("model.pth")
13
 
14
 
15
  @st.cache_resource
 
94
  new_vector = abstract_to_vector(
95
  abstract_input, abstract_title, st_model
96
  )
97
+
98
  probabilities = get_citation_predictions(
99
+ vector=F.normalize(new_vector.view(1, -1), p=2, dim=1),
100
  model=gcn_model,
101
  z_all=z_all,
102
  num_nodes=dataset.data.num_nodes,
 
113
 
114
  with related_work_placeholder.container():
115
  with st.spinner("Generating related work section..."):
116
+ related_work = generate_related_work(
117
+ st.session_state.references
118
+ )
119
  st.session_state.related_work = related_work
120
 
121
  if st.session_state.references:
llm/__init__.py CHANGED
File without changes
llm/related_work_generator.py CHANGED
File without changes
model/__init__.py CHANGED
File without changes
model/cos-sim.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from sklearn.metrics import roc_auc_score, average_precision_score
6
+ from sentence_transformers import SentenceTransformer
7
+ import argparse
8
+ from dataset.ogbn_link_pred_dataset import OGBNLinkPredDataset, OGBNLinkPredNegDataset
9
+
10
+ BATCH_SIZE_EDGES = 100_000 # edge batching for scoring
11
+
12
+
13
+ def parse_args():
14
+ parser = argparse.ArgumentParser()
15
+ parser.add_argument(
16
+ "--custom-neg", action=argparse.BooleanOptionalAction, default=False
17
+ )
18
+ parser.add_argument(
19
+ "--bert-embed", action=argparse.BooleanOptionalAction, default=False
20
+ )
21
+ return parser.parse_args()
22
+
23
+
24
+ @torch.no_grad()
25
+ def eval_edges_cos(global_emb, edge_index, edge_label, batch_size=BATCH_SIZE_EDGES):
26
+ # edge_index shape: [2, M] with GLOBAL node ids; edge_label: [M] in {0,1}
27
+ assert edge_index.dim() == 2 and edge_index.size(0) == 2
28
+ assert edge_index.max() < global_emb.size(0), "Edge node id out of range."
29
+ assert (edge_label == 0).any() and (edge_label == 1).any(), "Need both classes."
30
+
31
+ scores_list, labels_list = [], []
32
+ M = edge_index.size(1)
33
+ for i in range(0, M, batch_size):
34
+ j = min(i + batch_size, M)
35
+ src = edge_index[0, i:j].to(global_emb.device)
36
+ dst = edge_index[1, i:j].to(global_emb.device)
37
+ scores = (global_emb[src] * global_emb[dst]).sum(
38
+ dim=1
39
+ ) # cosine (L2-normalized)
40
+ scores_list.append(scores.float().cpu().numpy())
41
+ labels_list.append(edge_label[i:j].cpu().numpy())
42
+ y_scores = np.concatenate(scores_list)
43
+ y_true = np.concatenate(labels_list)
44
+ roc = roc_auc_score(y_true, y_scores)
45
+ ap = average_precision_score(y_true, y_scores)
46
+ return roc, ap
47
+
48
+
49
+ if __name__ == "__main__":
50
+ args = parse_args()
51
+ USE_CUSTOM_NEG = args.custom_neg
52
+ USE_BERT_EMBED = args.bert_embed
53
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
54
+
55
+ # --- Load dataset + frozen embeddings ---
56
+ if USE_CUSTOM_NEG:
57
+ print("using hard negatives")
58
+ dataset = OGBNLinkPredNegDataset(val_size=0.1, test_size=0.2)
59
+ else:
60
+ print("using random negatives")
61
+ dataset = OGBNLinkPredDataset(val_size=0.1, test_size=0.2)
62
+ if USE_BERT_EMBED:
63
+ print("using BERT embeds")
64
+ if Path("model/embeddings.pth").exists():
65
+ emb = torch.load("model/embeddings.pth", map_location=DEVICE)
66
+ else:
67
+ st = SentenceTransformer("bongsoo/kpf-sbert-128d-v1", device=DEVICE)
68
+ emb = st.encode(
69
+ dataset.corpus, convert_to_tensor=True, show_progress_bar=True
70
+ )
71
+ Path("model").mkdir(parents=True, exist_ok=True)
72
+ torch.save(emb, "model/embeddings.pth")
73
+ emb = F.normalize(emb.to(DEVICE), p=2, dim=1)
74
+ else:
75
+ print("using skipgram embeds")
76
+ emb = dataset.data.x
77
+
78
+ train_data, val_data, test_data = dataset.get_splits()
79
+
80
+ # Sanity checks
81
+ for split_name, data in [
82
+ ("train", train_data),
83
+ ("val", val_data),
84
+ ("test", test_data),
85
+ ]:
86
+ assert data.edge_label_index.size(1) == data.edge_label.size(0), (
87
+ f"{split_name} size mismatch"
88
+ )
89
+ assert (data.edge_label == 0).any() and (data.edge_label == 1).any(), (
90
+ f"{split_name} lacks negatives"
91
+ )
92
+ assert data.edge_label_index.max() < emb.size(0), (
93
+ f"{split_name} has node ids >= num_nodes"
94
+ )
95
+
96
+ val_roc, val_ap = eval_edges_cos(
97
+ emb, val_data.edge_label_index, val_data.edge_label
98
+ )
99
+ test_roc, test_ap = eval_edges_cos(
100
+ emb, test_data.edge_label_index, test_data.edge_label
101
+ )
102
+
103
+ print(f"Val ROC-AUC: {val_roc:.4f}, Val AP: {val_ap:.4f}")
104
+ print(f"Test ROC-AUC: {test_roc:.4f}, Test AP: {test_ap:.4f}")
model/mlp.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from sklearn.metrics import roc_auc_score, average_precision_score
5
+ import numpy as np
6
+ from dataset.ogbn_link_pred_dataset import (
7
+ OGBNLinkPredDataset,
8
+ OGBNLinkPredNegDataset,
9
+ # OGBNLinkPredNegDataset2,
10
+ )
11
+ from pathlib import Path
12
+ from sentence_transformers import SentenceTransformer
13
+ import argparse
14
+
15
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+ BATCH_SIZE = 2048
17
+ NUM_EPOCHS = 50
18
+
19
+
20
+ def parse_args():
21
+ parser = argparse.ArgumentParser()
22
+ parser.add_argument(
23
+ "--custom-neg", action=argparse.BooleanOptionalAction, default=False
24
+ )
25
+ parser.add_argument(
26
+ "--bert-embed", action=argparse.BooleanOptionalAction, default=False
27
+ )
28
+ return parser.parse_args()
29
+
30
+
31
+ # --- Feature builder ---
32
+ def edge_features(emb, ei):
33
+ u, v = ei
34
+ eu, ev = emb[u], emb[v]
35
+ return torch.cat([eu * ev, torch.abs(eu - ev)], dim=1)
36
+
37
+
38
+ # --- Simple MLP ---
39
+ class PairMLP(nn.Module):
40
+ def __init__(self, in_dim, hidden=256):
41
+ super().__init__()
42
+ self.fc1 = nn.Linear(in_dim, hidden)
43
+ self.fc2 = nn.Linear(hidden, 1)
44
+
45
+ def forward(self, x):
46
+ x = F.relu(self.fc1(x))
47
+ return self.fc2(x).squeeze(-1)
48
+
49
+
50
+ # --- Training loop ---
51
+ def run_epoch(data, train=True):
52
+ model.train(train)
53
+ total_loss = 0
54
+ idx = (
55
+ torch.randperm(data.edge_label.size(0))
56
+ if train
57
+ else torch.arange(data.edge_label.size(0))
58
+ )
59
+ for i in range(0, len(idx), BATCH_SIZE):
60
+ batch_end = min(i + BATCH_SIZE, data.edge_label.size(0))
61
+ batch_idx = idx[i:batch_end]
62
+ feats = edge_features(emb, data.edge_label_index[:, batch_idx]).to(DEVICE)
63
+ labels = data.edge_label[batch_idx].float().to(DEVICE)
64
+ scores = model(feats)
65
+ loss = F.binary_cross_entropy_with_logits(scores, labels)
66
+ if train:
67
+ opt.zero_grad()
68
+ loss.backward()
69
+ opt.step()
70
+ total_loss += loss.item() * len(batch_idx)
71
+ return total_loss / len(idx)
72
+
73
+
74
+ @torch.no_grad()
75
+ def evaluate(data):
76
+ scores_all, labels_all = [], []
77
+ for i in range(0, data.edge_label.size(0), BATCH_SIZE):
78
+ batch_end = min(i + BATCH_SIZE, data.edge_label.size(0))
79
+ feats = edge_features(emb, data.edge_label_index[:, i:batch_end]).to(DEVICE)
80
+ labels = data.edge_label[i : i + BATCH_SIZE]
81
+ scores = torch.sigmoid(model(feats)).cpu().numpy()
82
+ scores_all.append(scores)
83
+ labels_all.append(labels.numpy())
84
+ y_scores = np.concatenate(scores_all)
85
+ y_true = np.concatenate(labels_all)
86
+ return roc_auc_score(y_true, y_scores), average_precision_score(y_true, y_scores)
87
+
88
+
89
+ if __name__ == "__main__":
90
+ args = parse_args()
91
+ USE_CUSTOM_NEG = args.custom_neg
92
+ USE_BERT_EMBED = args.bert_embed
93
+
94
+ # --- Load dataset + frozen embeddings ---
95
+ if USE_CUSTOM_NEG:
96
+ print("using hard negatives")
97
+ dataset = OGBNLinkPredNegDataset(val_size=0.1, test_size=0.2)
98
+ else:
99
+ print("using random negatives")
100
+ dataset = OGBNLinkPredDataset(val_size=0.1, test_size=0.2)
101
+ if USE_BERT_EMBED:
102
+ print("using BERT embeds")
103
+ if Path("model/embeddings.pth").exists():
104
+ emb = torch.load("model/embeddings.pth", map_location=DEVICE)
105
+ else:
106
+ st = SentenceTransformer("bongsoo/kpf-sbert-128d-v1", device=DEVICE)
107
+ emb = st.encode(
108
+ dataset.corpus, convert_to_tensor=True, show_progress_bar=True
109
+ )
110
+ Path("model").mkdir(parents=True, exist_ok=True)
111
+ torch.save(emb, "model/embeddings.pth")
112
+ emb = emb.to(DEVICE)
113
+ else:
114
+ print("using skipgram embeds")
115
+ emb = dataset.data.x
116
+
117
+ train_data, val_data, test_data = dataset.get_splits()
118
+
119
+ model = PairMLP(emb.size(1) * 2).to(DEVICE)
120
+ opt = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-4)
121
+
122
+ # --- Training ---
123
+ best_roc, best_ap = 0.0, 0.0
124
+ for epoch in range(NUM_EPOCHS):
125
+ loss = run_epoch(train_data, train=True)
126
+ val_roc, val_ap = evaluate(val_data)
127
+ if val_roc > best_roc:
128
+ torch.save(
129
+ model.state_dict(), f"model_roc{str(val_roc)[:4].replace('.', '_')}.pth"
130
+ )
131
+ print(
132
+ f"Epoch {epoch + 1} | Loss {loss:.4f} | Val ROC {val_roc:.4f} | Val AP {val_ap:.4f}"
133
+ )
134
+
135
+ # --- Final test ---
136
+ test_roc, test_ap = evaluate(test_data)
137
+ print(f"Test ROC {test_roc:.4f} | Test AP {test_ap:.4f}")
predictor/__init__.py CHANGED
File without changes
predictor/link_predictor.py CHANGED
@@ -1,10 +1,10 @@
1
- from pathlib import Path
2
  import torch
 
 
 
3
  import structlog
4
-
5
  from sentence_transformers import SentenceTransformer
6
- from model.simple_gcn_model import SimpleGCN
7
- from dataset.ogbn_link_pred_dataset import OGBNLinkPredDataset
8
 
9
 
10
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
@@ -24,50 +24,33 @@ def abstract_to_vector(
24
  text = title + "\n" + abstract_text
25
  with torch.no_grad():
26
  vector = st_model.encode(text, convert_to_tensor=True, device=DEVICE)
27
- return vector.unsqueeze(0)
28
 
29
 
30
  def get_citation_predictions(
31
- vector: torch.Tensor, model: SimpleGCN, z_all: torch.Tensor, num_nodes: int
 
 
 
32
  ) -> torch.Tensor:
33
  model.eval()
34
- with torch.no_grad():
35
- empty_edge_index = torch.empty(2, 0, dtype=torch.long, device=DEVICE)
36
- h1_new = model.conv1(vector, edge_index=empty_edge_index).relu()
37
- z_new = model.conv2(h1_new, edge_index=empty_edge_index)
38
-
39
- new_node_idx = num_nodes
40
- row = torch.full((num_nodes,), fill_value=new_node_idx, device=DEVICE)
41
- col = torch.arange(num_nodes, device=DEVICE)
42
- edge_label_index_to_check = torch.stack([row, col], dim=0)
43
-
44
- z_combined = torch.cat([z_all, z_new], dim=0)
45
 
46
  with torch.no_grad():
47
- logits = model.decode(z_combined, edge_label_index_to_check)
48
-
49
- return torch.sigmoid(logits)
 
 
 
 
50
 
51
 
52
  def format_top_k_predictions(
53
- probs: torch.Tensor, dataset: OGBNLinkPredDataset, top_k=10., show_prob=False
54
  ) -> str:
55
- """
56
- Formats the top K predictions into a single string for display.
57
-
58
- Args:
59
- probs (torch.Tensor): The tensor of probabilities for all potential links.
60
- dataset (OGBNLinkPredDataset): The dataset object containing the corpus.
61
- top_k (int): The number of top predictions to format.
62
-
63
- Returns:
64
- str: A formatted string with the top K predictions.
65
- """
66
  probs = probs.cpu()
67
  top_probs, top_indices = torch.topk(probs, k=top_k)
68
-
69
  output_lines = []
70
-
71
  header = f"Top {top_k} Citation Predictions:"
72
  output_lines.append(header)
73
 
@@ -86,14 +69,9 @@ def format_top_k_predictions(
86
 
87
 
88
  def prepare_system(model_path: Path):
89
- """
90
- Performs all one-time, expensive operations to prepare the system.
91
- Initializes models, loads data, and pre-calculates embeddings using structured logging.
92
- """
93
  logger.info("system_preparation.start")
94
 
95
  dataset = OGBNLinkPredDataset()
96
- data = dataset.data.to(DEVICE)
97
  logger.info("dataset.load.success")
98
 
99
  model_name = "bongsoo/kpf-sbert-128d-v1"
@@ -103,54 +81,69 @@ def prepare_system(model_path: Path):
103
  st_model = SentenceTransformer(model_name, device=DEVICE)
104
  logger.info("model.load.success", model_type="SentenceTransformer")
105
 
106
- gcn_model = SimpleGCN(
107
- in_channels=dataset.num_features, hidden_channels=256, out_channels=128
108
- ).to(DEVICE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  if model_path.exists():
111
- gcn_model.load_state_dict(torch.load(model_path, map_location=DEVICE))
112
- logger.info("model.load.success", model_type="GCN", path=str(model_path))
113
  else:
114
  logger.warning(
115
  "model.load.failure",
116
- model_type="GCN",
117
  path=str(model_path),
118
  reason="File not found, using random weights.",
119
  )
120
- gcn_model.eval()
121
 
122
- logger.info("embeddings.calculation.start", embedding_name="z_all")
123
- with torch.no_grad():
124
- z_all = gcn_model(data.x, data.edge_index)
125
 
126
  logger.info(
127
  "embeddings.calculation.success",
128
- embedding_name="z_all",
129
- shape=list(z_all.shape),
130
  )
131
-
132
  logger.info("system_preparation.finish", status="ready_for_predictions")
133
- return gcn_model, st_model, dataset, z_all
 
134
 
135
 
136
  if __name__ == "__main__":
137
  MODEL_PATH = Path("model.pth")
138
-
139
- gcn_model, st_model, dataset, z_all = prepare_system(MODEL_PATH)
140
 
141
  my_title = "A Survey of Graph Neural Networks for Link Prediction"
142
- my_abstract = """Link predictor is a critical task in graph analysis. "
143
- "In this paper, we review various GNN architectures like GCN and GraphSAGE for predicting edges.
144
- """
145
 
146
  new_vector = abstract_to_vector(my_title, my_abstract, st_model)
 
 
 
147
 
148
  probabilities = get_citation_predictions(
149
  vector=new_vector,
150
- model=gcn_model,
151
- z_all=z_all,
152
  num_nodes=dataset.data.num_nodes,
153
  )
154
 
155
- references = format_top_k_predictions(probabilities, dataset, top_k=5)
 
 
156
  print(references)
 
 
1
  import torch
2
+ import torch.nn.functional as F
3
+ from dataset.ogbn_link_pred_dataset import OGBNLinkPredDataset
4
+ from pathlib import Path
5
  import structlog
 
6
  from sentence_transformers import SentenceTransformer
7
+ from model.mlp import edge_features, PairMLP
 
8
 
9
 
10
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
 
24
  text = title + "\n" + abstract_text
25
  with torch.no_grad():
26
  vector = st_model.encode(text, convert_to_tensor=True, device=DEVICE)
27
+ return vector
28
 
29
 
30
  def get_citation_predictions(
31
+ vector: torch.Tensor,
32
+ model: PairMLP,
33
+ z_all: torch.Tensor,
34
+ num_nodes: int,
35
  ) -> torch.Tensor:
36
  model.eval()
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  with torch.no_grad():
39
+ combined_embeddings = torch.cat([vector.view(1, -1), z_all], dim=0)
40
+ edge_index = torch.tensor([[0] * num_nodes, list(range(1, num_nodes + 1))]).to(
41
+ DEVICE
42
+ )
43
+ feat = edge_features(combined_embeddings, edge_index).to(DEVICE)
44
+ scores = torch.sigmoid(model(feat))
45
+ return scores.squeeze()
46
 
47
 
48
  def format_top_k_predictions(
49
+ probs: torch.Tensor, dataset: OGBNLinkPredDataset, top_k=10, show_prob=False
50
  ) -> str:
 
 
 
 
 
 
 
 
 
 
 
51
  probs = probs.cpu()
52
  top_probs, top_indices = torch.topk(probs, k=top_k)
 
53
  output_lines = []
 
54
  header = f"Top {top_k} Citation Predictions:"
55
  output_lines.append(header)
56
 
 
69
 
70
 
71
  def prepare_system(model_path: Path):
 
 
 
 
72
  logger.info("system_preparation.start")
73
 
74
  dataset = OGBNLinkPredDataset()
 
75
  logger.info("dataset.load.success")
76
 
77
  model_name = "bongsoo/kpf-sbert-128d-v1"
 
81
  st_model = SentenceTransformer(model_name, device=DEVICE)
82
  logger.info("model.load.success", model_type="SentenceTransformer")
83
 
84
+ # Load corpus embeddings
85
+ if Path("model/embeddings.pth").exists():
86
+ corpus_embeddings = torch.load("model/embeddings.pth", map_location=DEVICE)
87
+ logger.info("embeddings.load.success")
88
+ else:
89
+ logger.info("embeddings.calculation.start")
90
+ corpus_embeddings = st_model.encode(
91
+ dataset.corpus, convert_to_tensor=True, show_progress_bar=True
92
+ )
93
+ Path("model").mkdir(parents=True, exist_ok=True)
94
+ torch.save(corpus_embeddings, "model/embeddings.pth")
95
+ logger.info("embeddings.calculation.success")
96
+
97
+ corpus_embeddings = F.normalize(corpus_embeddings.to(DEVICE), p=2, dim=1)
98
+
99
+ # Initialize PairMLP
100
+ embedding_dim = corpus_embeddings.size(1)
101
+ pair_mlp = PairMLP(embedding_dim * 2).to(DEVICE)
102
 
103
  if model_path.exists():
104
+ pair_mlp.load_state_dict(torch.load(model_path, map_location=DEVICE))
105
+ logger.info("model.load.success", model_type="PairMLP", path=str(model_path))
106
  else:
107
  logger.warning(
108
  "model.load.failure",
109
+ model_type="PairMLP",
110
  path=str(model_path),
111
  reason="File not found, using random weights.",
112
  )
 
113
 
114
+ pair_mlp.eval()
 
 
115
 
116
  logger.info(
117
  "embeddings.calculation.success",
118
+ embedding_name="corpus_embeddings",
119
+ shape=list(corpus_embeddings.shape),
120
  )
 
121
  logger.info("system_preparation.finish", status="ready_for_predictions")
122
+
123
+ return pair_mlp, st_model, dataset, corpus_embeddings
124
 
125
 
126
  if __name__ == "__main__":
127
  MODEL_PATH = Path("model.pth")
128
+ pair_model, st_model, dataset, corpus_embeddings = prepare_system(MODEL_PATH)
 
129
 
130
  my_title = "A Survey of Graph Neural Networks for Link Prediction"
131
+ my_abstract = """Link prediction is a critical task in graph analysis.
132
+ In this paper, we review various GNN architectures like GCN and GraphSAGE for predicting edges."""
 
133
 
134
  new_vector = abstract_to_vector(my_title, my_abstract, st_model)
135
+ new_vector = F.normalize(
136
+ new_vector.view(1, -1), p=2, dim=1
137
+ ) # Normalize like corpus embeddings
138
 
139
  probabilities = get_citation_predictions(
140
  vector=new_vector,
141
+ model=pair_model,
142
+ z_all=corpus_embeddings,
143
  num_nodes=dataset.data.num_nodes,
144
  )
145
 
146
+ references = format_top_k_predictions(
147
+ probabilities, dataset, top_k=5, show_prob=True
148
+ )
149
  print(references)
pyproject.toml CHANGED
File without changes