File size: 10,713 Bytes
09fb9f0
5941390
d127695
5941390
 
f9dd2ce
 
 
 
5941390
f9dd2ce
 
8346ea0
f9dd2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8346ea0
383c5b7
f9dd2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5941390
f9dd2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383c5b7
f9dd2ce
 
 
 
 
383c5b7
09fb9f0
f9dd2ce
 
 
5941390
d127695
f9dd2ce
d127695
383c5b7
 
a15fce5
e607283
383c5b7
f9dd2ce
 
 
 
66eaf5f
f9dd2ce
 
d127695
f9dd2ce
66eaf5f
f9dd2ce
5941390
f9dd2ce
383c5b7
f9dd2ce
 
383c5b7
5941390
383c5b7
f9dd2ce
5941390
 
f9dd2ce
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
from image_gen_aux import UpscaleWithModel
from image_gen_aux.utils import load_image
import tempfile
from PIL import Image
import traceback
import torch

# --- Model Dictionary ---
# A complete dictionary of your self-trained models.
MODELS = {
    "1xDeH264_realplksr": "Phips/1xDeH264_realplksr",
    "1xDeJPG_HAT": "Phips/1xDeJPG_HAT",
    "1xDeJPG_OmniSR": "Phips/1xDeJPG_OmniSR",
    "1xDeJPG_realplksr_otf": "Phips/1xDeJPG_realplksr_otf",
    "1xDeJPG_SRFormer_light": "Phips/1xDeJPG_SRFormer_light",
    "1xDeNoise_realplksr_otf": "Phips/1xDeNoise_realplksr_otf",
    "1xExposureCorrection_compact": "Phips/1xExposureCorrection_compact",
    "1xOverExposureCorrection_compact": "Phips/1xOverExposureCorrection_compact",
    "1xUnderExposureCorrection_compact": "Phips/1xUnderExposureCorrection_compact",
    "2xAoMR_mosr": "Phips/2xAoMR_mosr",
    "2xEvangelion_compact": "Phips/2xEvangelion_compact",
    "2xEvangelion_dat2": "Phips/2xEvangelion_dat2",
    "2xEvangelion_omnisr": "Phips/2xEvangelion_omnisr",
    "2xHFA2k_compact_multijpg": "Phips/2xHFA2k_compact_multijpg",
    "2xHFA2k_LUDVAE_compact": "Phips/2xHFA2k_LUDVAE_compact",
    "2xHFA2k_LUDVAE_SPAN": "Phips/2xHFA2k_LUDVAE_SPAN",
    "2xHFA2kAVCCompact": "Phips/2xHFA2kAVCCompact",
    "2xHFA2kAVCOmniSR": "Phips/2xHFA2kAVCOmniSR",
    "2xHFA2kAVCSRFormer_light": "Phips/2xHFA2kAVCSRFormer_light",
    "2xHFA2kCompact": "Phips/2xHFA2kCompact",
    "2xHFA2kOmniSR": "Phips/2xHFA2kOmniSR",
    "2xHFA2kReal-CUGAN": "Phips/2xHFA2kReal-CUGAN",
    "2xHFA2kShallowESRGAN": "Phips/2xHFA2kShallowESRGAN",
    "2xHFA2kSPAN": "Phips/2xHFA2kSPAN",
    "2xHFA2kSwinIR-S": "Phips/2xHFA2kSwinIR-S",
    "2xLexicaRRDBNet": "Phips/2xLexicaRRDBNet",
    "2xLexicaRRDBNet_Sharp": "Phips/2xLexicaRRDBNet_Sharp",
    "2xNomosUni_compact_multijpg": "Phips/2xNomosUni_compact_multijpg",
    "2xNomosUni_compact_multijpg_ldl": "Phips/2xNomosUni_compact_multijpg_ldl",
    "2xNomosUni_compact_otf_medium": "Phips/2xNomosUni_compact_otf_medium",
    "2xNomosUni_esrgan_multijpg": "Phips/2xNomosUni_esrgan_multijpg",
    "2xNomosUni_span_multijpg": "Phips/2xNomosUni_span_multijpg",
    "2xNomosUni_span_multijpg_ldl": "Phips/2xNomosUni_span_multijpg_ldl",
    "2xParimgCompact": "Phips/2xParimgCompact",
    "4x4xTextures_GTAV_rgt-s": "Phips/4xTextures_GTAV_rgt-s",
    "4xArtFaces_realplksr_dysample": "Phips/4xArtFaces_realplksr_dysample",
    "4xBHI_dat2_multiblur": "Phips/4xBHI_dat2_multiblur",
    "4xBHI_dat2_multiblurjpg": "Phips/4xBHI_dat2_multiblurjpg",
    "4xBHI_dat2_otf": "Phips/4xBHI_dat2_otf",
    "4xBHI_dat2_real": "Phips/4xBHI_dat2_real",
    "4xBHI_realplksr_dysample_multi": "Phips/4xBHI_realplksr_dysample_multi",
    "4xBHI_realplksr_dysample_multiblur": "Phips/4xBHI_realplksr_dysample_multiblur",
    "4xBHI_realplksr_dysample_otf": "Phips/4xBHI_realplksr_dysample_otf",
    "4xBHI_realplksr_dysample_otf_nn": "Phips/4xBHI_realplksr_dysample_otf_nn",
    "4xBHI_realplksr_dysample_real": "Phips/4xBHI_realplksr_dysample_real",
    "4xFaceUpDAT": "Phips/4xFaceUpDAT",
    "4xFaceUpLDAT": "Phips/4xFaceUpLDAT",
    "4xFaceUpSharpDAT": "Phips/4xFaceUpSharpDAT",
    "4xFaceUpSharpLDAT": "Phips/4xFaceUpSharpLDAT",
    "4xFFHQDAT": "Phips/4xFFHQDAT",
    "4xFFHQLDAT": "Phips/4xFFHQLDAT",
    "4xHFA2k": "Phips/4xHFA2k",
    "4xHFA2k_ludvae_realplksr_dysample": "Phips/4xHFA2k_ludvae_realplksr_dysample",
    "4xHFA2kLUDVAEGRL_small": "Phips/4xHFA2kLUDVAEGRL_small",
    "4xHFA2kLUDVAESRFormer_light": "Phips/4xHFA2kLUDVAESRFormer_light",
    "4xHFA2kLUDVAESwinIR_light": "Phips/4xHFA2kLUDVAESwinIR_light",
    "4xLexicaDAT2_otf": "Phips/4xLexicaDAT2_otf",
    "4xLSDIRCompact2": "Phips/4xLSDIRCompact2",
    "4xLSDIRCompact": "Phips/4xLSDIRCompact",
    "4xLSDIRCompactC3": "Phips/4xLSDIRCompactC3",
    "4xLSDIRCompactC": "Phips/4xLSDIRCompactC",
    "4xLSDIRCompactCR3": "Phips/4xLSDIRCompactCR3",
    "4xLSDIRCompactN3": "Phips/4xLSDIRCompactN3",
    "4xLSDIRCompactR3": "Phips/4xLSDIRCompactR3",
    "4xLSDIRCompactR": "Phips/4xLSDIRCompactR",
    "4xLSDIRDAT": "Phips/4xLSDIRDAT",
    "4xNature_realplksr_dysample": "Phips/4xNature_realplksr_dysample",
    "4xNomos2_hq_atd": "Phips/4xNomos2_hq_atd",
    "4xNomos2_hq_dat2": "Phips/4xNomos2_hq_dat2",
    "4xNomos2_hq_drct-l": "Phips/4xNomos2_hq_drct-l",
    "4xNomos2_hq_mosr": "Phips/4xNomos2_hq_mosr",
    "4xNomos2_otf_esrgan": "Phips/4xNomos2_otf_esrgan",
    "4xNomos2_realplksr_dysample": "Phips/4xNomos2_realplksr_dysample",
    "4xNomos8k_atd_jpg": "Phips/4xNomos8k_atd_jpg",
    "4xNomos8kDAT": "Phips/4xNomos8kDAT",
    "4xNomos8kHAT-L_bokeh_jpg": "Phips/4xNomos8kHAT-L_bokeh_jpg",
    "4xNomos8kHAT-L_otf": "Phips/4xNomos8kHAT-L_otf",
    "4xNomos8kSC": "Phips/4xNomos8kSC",
    "4xNomos8kSCHAT-L": "Phips/4xNomos8kSCHAT-L",
    "4xNomos8kSCHAT-S": "Phips/4xNomos8kSCHAT-S",
    "4xNomos8kSCSRFormer": "Phips/4xNomos8kSCSRFormer",
    "4xNomosUni_rgt_multijpg": "Phips/4xNomosUni_rgt_multijpg",
    "4xNomosUni_rgt_s_multijpg": "Phips/4xNomosUni_rgt_s_multijpg",
    "4xNomosUni_span_multijpg": "Phips/4xNomosUni_span_multijpg",
    "4xNomosUniDAT2_box": "Phips/4xNomosUniDAT2_box",
    "4xNomosUniDAT2_multijpg_ldl": "Phips/4xNomosUniDAT2_multijpg_ldl",
    "4xNomosUniDAT2_multijpg_ldl_sharp": "Phips/4xNomosUniDAT2_multijpg_ldl_sharp",
    "4xNomosUniDAT_bokeh_jpg": "Phips/4xNomosUniDAT_bokeh_jpg",
    "4xNomosUniDAT_otf": "Phips/4xNomosUniDAT_otf",
    "4xNomosWebPhoto_atd": "Phips/4xNomosWebPhoto_atd",
    "4xNomosWebPhoto_esrgan": "Phips/4xNomosWebPhoto_esrgan",
    "4xNomosWebPhoto_RealPLKSR": "Phips/4xNomosWebPhoto_RealPLKSR",
    "4xReal_SSDIR_DAT_GAN": "Phips/4xReal_SSDIR_DAT_GAN",
    "4xRealWebPhoto_v3_atd": "Phips/4xRealWebPhoto_v3_atd",
    "4xRealWebPhoto_v4_dat2": "Phips/4xRealWebPhoto_v4_dat2",
    "4xRealWebPhoto_v4_drct-l": "Phips/4xRealWebPhoto_v4_drct-l",
    "4xSSDIRDAT": "Phips/4xSSDIRDAT",
    "4xTextureDAT2_otf": "Phips/4xTextureDAT2_otf",
    "4xTextures_GTAV_rgt-s": "Phips/4xTextures_GTAV_rgt-s",
    "4xTextures_GTAV_rgt-s_dither": "Phips/4xTextures_GTAV_rgt-s_dither",
}

# --- Efficient Model Loading and Caching ---
# Global dictionary to hold models that are already loaded in GPU memory.
LOADED_MODELS_CACHE = {}

def get_upscaler(model_name: str):
    """
    Loads a model if it's not already in the cache, and moves it to the GPU.
    Returns the cached model.
    """
    if model_name not in LOADED_MODELS_CACHE:
        print(f"Loading model: {model_name}")
        # Load the model and immediately move it to the GPU.
        LOADED_MODELS_CACHE[model_name] = UpscaleWithModel.from_pretrained(
            MODELS[model_name]
        ).to("cuda")
    return LOADED_MODELS_CACHE[model_name]

# --- Core Upscaling Function ---
@spaces.GPU
def upscale_image(image, model_selection: str, progress=gr.Progress(track_tqdm=True)):
    """
    Main function to perform the upscaling. It includes error handling.
    """
    if image is None:
        raise gr.Error("No image uploaded. Please upload an image to upscale.")

    try:
        progress(0, desc="Loading image and model...")
        original = load_image(image)
        
        # Get the pre-loaded or newly loaded upscaler from the GPU cache.
        upscaler = get_upscaler(model_selection)

        progress(0.5, desc="Upscaling image... (this may take a moment)")
        # Perform the upscaling on the GPU.
        upscaled_pil_image = upscaler(original, tiling=True, tile_width=1024, tile_height=1024)

        progress(0.9, desc="Saving result...")
        # Save the result to a temporary PNG file for lossless download.
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            upscaled_pil_image.save(temp_file.name, "PNG")
            output_filepath = temp_file.name

        # Return both the images for the slider and the filepath for the download button.
        return (original, upscaled_pil_image), output_filepath

    except Exception as e:
        # Print the full error to the console for debugging.
        print(f"An error occurred: {traceback.format_exc()}")
        # Raise a user-friendly error in the Gradio UI.
        raise gr.Error(f"An error occurred during processing: {e}")

def clear_outputs():
    """Function to clear all output components."""
    return None, None

# --- Gradio Interface Definition ---
title = """<h1 align="center">Image Upscaler</h1>
<div align="center">
Use this Space to upscale your images with a collection of custom-trained models.<br>
This app uses the <a href="https://github.com/asomoza/image_gen_aux">Image Generation Auxiliary Tools</a> library and <a href="https://github.com/Phhofm/models">my models</a>.<br>
Tiling is fixed at 1024x1024 for optimal performance. An <a href="https://huggingface.co/spaces/Phips/Upscaler/resolve/main/input_example1.png">example input image</a> is available to try.
</div>
"""

# Best practice for public Spaces: configure automatic cache cleaning.
# This will run every hour and delete any temporary files older than one hour.
with gr.Blocks(delete_cache=(3600, 3600)) as demo:
    gr.HTML(title)
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="Input Image")
            model_selection = gr.Dropdown(
                choices=list(MODELS.keys()),
                value="4xNomosWebPhoto_RealPLKSR",
                label="Model (alphabetically sorted)",
            )
            run_button = gr.Button("Upscale", variant="primary")
            
        with gr.Column(scale=2):
            result_slider = ImageSlider(
                interactive=False,
                label="Compare Original vs. Upscaled",
                show_label=True,
            )
            download_output = gr.File(label="Download Upscaled Image (Lossless PNG)")

    # --- Event Handling ---
    run_button.click(
        fn=clear_outputs,
        inputs=None,
        outputs=[result_slider, download_output],
        queue=False # Clearing should be instant, no need to queue.
    ).then(
        fn=upscale_image,
        inputs=[input_image, model_selection],
        outputs=[result_slider, download_output],
    )

# --- Pre-load the default model for a faster first-time user experience ---
# This will happen once when the Space starts up.
try:
    print("Pre-loading default model...")
    get_upscaler("4xNomosWebPhoto_RealPLKSR")
    print("Default model loaded successfully.")
except Exception as e:
    print(f"Could not pre-load the default model. The app will still work. Error: {e}")

# Queueing is essential for public-facing apps to handle concurrent users.
demo.queue()
demo.launch(share=False)