import gradio as gr import numpy as np import random import spaces import torch from diffusers.pipelines.prx import PRXPipeline dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Load the PRX pipeline with the distilled DC-AE model pipe = PRXPipeline.from_pretrained( "Photoroom/prx-512-t2i-dc-ae-sft-distilled", torch_dtype=dtype ) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU() def infer( prompt, seed=42, randomize_seed=False, width=512, height=512, num_inference_steps=8, guidance_scale=1.0, progress=gr.Progress(track_tqdm=True) ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, ).images[0] return image, seed examples = [ "A front-facing portrait of a lion on the golden savanna at sunset.", "A serene mountain landscape with a crystal clear lake reflecting snow-capped peaks.", "A futuristic cityscape at night with neon lights and flying vehicles.", "A whimsical illustration of a cat wearing a wizard hat and casting spells.", "A cozy coffee shop interior with warm lighting and plants on the windowsill.", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# PRX Image Generator") gr.Markdown( "Generate high-quality images using the PRX distilled model with DC-AE compression. " "This model uses 8-step distillation for fast inference with cfg=1.0. " "Works best with less detailed prompts in natural language." ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=28, step=1, value=8, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=5.0, step=0.1, value=1.0, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale, ], outputs=[result, seed] ) demo.launch()