Update app.py
Browse files
app.py
CHANGED
|
@@ -26,21 +26,6 @@ if 'FIREWORKS_API_KEY' not in os.environ:
|
|
| 26 |
if 'MISTRAL_API_KEY' not in os.environ:
|
| 27 |
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
|
| 28 |
|
| 29 |
-
# Create prompt function
|
| 30 |
-
@pxt.udf
|
| 31 |
-
def create_prompt(top_k_list: list[dict], question: str) -> str:
|
| 32 |
-
concat_top_k = '\n\n'.join(
|
| 33 |
-
elt['text'] for elt in reversed(top_k_list)
|
| 34 |
-
)
|
| 35 |
-
return f'''
|
| 36 |
-
PASSAGES:
|
| 37 |
-
|
| 38 |
-
{concat_top_k}
|
| 39 |
-
|
| 40 |
-
QUESTION:
|
| 41 |
-
|
| 42 |
-
{question}'''
|
| 43 |
-
|
| 44 |
"""Gradio Application"""
|
| 45 |
def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, show_question, show_correct_answer, show_gpt4omini, show_llamav3p23b, show_mistralsmall, progress=gr.Progress()):
|
| 46 |
# Ensure a clean slate for the demo by removing and recreating the 'rag_demo' directory
|
|
@@ -86,6 +71,17 @@ def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, sh
|
|
| 86 |
string_embed=sentence_transformer.using(model_id='sentence-transformers/all-MiniLM-L12-v2')
|
| 87 |
)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
# Define a query function to retrieve the top-k most similar chunks for a given question
|
| 90 |
@chunks_t.query
|
| 91 |
def top_k(query_text: str):
|
|
@@ -96,52 +92,53 @@ def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, sh
|
|
| 96 |
.limit(5)
|
| 97 |
)
|
| 98 |
|
| 99 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
queries_t.add_computed_column(question_context=chunks_t.queries.top_k(queries_t.question))
|
| 101 |
queries_t.add_computed_column(prompt=create_prompt(
|
| 102 |
-
queries_t.question_context,
|
|
|
|
| 103 |
))
|
| 104 |
-
|
| 105 |
-
#
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
'content': 'Read the following passages and answer the question based on their contents.'
|
| 110 |
-
},
|
| 111 |
-
{
|
| 112 |
-
'role': 'user',
|
| 113 |
-
'content': queries_t.prompt
|
| 114 |
-
}
|
| 115 |
-
]
|
| 116 |
-
|
| 117 |
-
progress(0.6, desc="Querying models...")
|
| 118 |
-
|
| 119 |
-
# Add OpenAI response column
|
| 120 |
queries_t.add_computed_column(response=openai.chat_completions(
|
| 121 |
model='gpt-4o-mini-2024-07-18',
|
| 122 |
-
messages=
|
| 123 |
max_tokens=300,
|
| 124 |
top_p=0.9,
|
| 125 |
temperature=0.7
|
| 126 |
))
|
| 127 |
-
|
| 128 |
-
# Create a table in Pixeltable and pick a model hosted on Anthropic with some parameters
|
| 129 |
queries_t.add_computed_column(response_2=f_chat_completions(
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
temperature=0.7
|
| 136 |
))
|
| 137 |
-
|
| 138 |
queries_t.add_computed_column(response_3=chat_completions(
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
temperature=0.7
|
| 145 |
))
|
| 146 |
|
| 147 |
# Extract the answer text from the API response
|
|
|
|
| 26 |
if 'MISTRAL_API_KEY' not in os.environ:
|
| 27 |
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
"""Gradio Application"""
|
| 30 |
def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, show_question, show_correct_answer, show_gpt4omini, show_llamav3p23b, show_mistralsmall, progress=gr.Progress()):
|
| 31 |
# Ensure a clean slate for the demo by removing and recreating the 'rag_demo' directory
|
|
|
|
| 71 |
string_embed=sentence_transformer.using(model_id='sentence-transformers/all-MiniLM-L12-v2')
|
| 72 |
)
|
| 73 |
|
| 74 |
+
# Create prompt function
|
| 75 |
+
@pxt.udf
|
| 76 |
+
def create_prompt(top_k_list: list[dict], question: str) -> str:
|
| 77 |
+
if not top_k_list:
|
| 78 |
+
return f"QUESTION:\n{question}"
|
| 79 |
+
|
| 80 |
+
concat_top_k = '\n\n'.join(
|
| 81 |
+
elt['text'] for elt in reversed(top_k_list) if elt and 'text' in elt
|
| 82 |
+
)
|
| 83 |
+
return f'''PASSAGES:\n{concat_top_k}\n\nQUESTION:\n{question}'''
|
| 84 |
+
|
| 85 |
# Define a query function to retrieve the top-k most similar chunks for a given question
|
| 86 |
@chunks_t.query
|
| 87 |
def top_k(query_text: str):
|
|
|
|
| 92 |
.limit(5)
|
| 93 |
)
|
| 94 |
|
| 95 |
+
# Then modify the messages structure to use a UDF
|
| 96 |
+
@pxt.udf
|
| 97 |
+
def create_messages(prompt: str) -> list[dict]:
|
| 98 |
+
return [
|
| 99 |
+
{
|
| 100 |
+
'role': 'system',
|
| 101 |
+
'content': 'Read the following passages and answer the question based on their contents.'
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
'role': 'user',
|
| 105 |
+
'content': prompt
|
| 106 |
+
}
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
# First add the context and prompt columns
|
| 110 |
queries_t.add_computed_column(question_context=chunks_t.queries.top_k(queries_t.question))
|
| 111 |
queries_t.add_computed_column(prompt=create_prompt(
|
| 112 |
+
queries_t.question_context,
|
| 113 |
+
queries_t.question
|
| 114 |
))
|
| 115 |
+
|
| 116 |
+
# Add the messages column
|
| 117 |
+
queries_t.add_computed_column(messages=create_messages(queries_t.prompt))
|
| 118 |
+
|
| 119 |
+
# Then add the response columns using the messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
queries_t.add_computed_column(response=openai.chat_completions(
|
| 121 |
model='gpt-4o-mini-2024-07-18',
|
| 122 |
+
messages=queries_t.messages,
|
| 123 |
max_tokens=300,
|
| 124 |
top_p=0.9,
|
| 125 |
temperature=0.7
|
| 126 |
))
|
| 127 |
+
|
|
|
|
| 128 |
queries_t.add_computed_column(response_2=f_chat_completions(
|
| 129 |
+
messages=queries_t.messages,
|
| 130 |
+
model='accounts/fireworks/models/llama-v3p2-3b-instruct',
|
| 131 |
+
max_tokens=300,
|
| 132 |
+
top_p=0.9,
|
| 133 |
+
temperature=0.7
|
|
|
|
| 134 |
))
|
| 135 |
+
|
| 136 |
queries_t.add_computed_column(response_3=chat_completions(
|
| 137 |
+
messages=queries_t.messages,
|
| 138 |
+
model='mistral-small-latest',
|
| 139 |
+
max_tokens=300,
|
| 140 |
+
top_p=0.9,
|
| 141 |
+
temperature=0.7
|
|
|
|
| 142 |
))
|
| 143 |
|
| 144 |
# Extract the answer text from the API response
|