Spaces:
Sleeping
Sleeping
File size: 3,270 Bytes
a308534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
title: SAP Chatbot
emoji: π€
colorFrom: blue
colorTo: purple
sdk: streamlit
sdk_version: 1.28.0
app_file: app.py
pinned: false
---
# π§© SAP Intelligent Assistant
A free, open-source **RAG (Retrieval-Augmented Generation)** system for answering SAP-related questions using cloud LLMs and vector databases.
## β¨ Key Features
- β
100% Free & Open Source
- β
Multi-source SAP data (Community, GitHub, StackOverflow, Dev.to, Medium)
- β
Production-ready: Supabase + pgvector vector database
- β
HuggingFace Inference API for fast responses
- β
Automatic data ingestion via GitHub Actions
- β
Beautiful Streamlit UI
- β
Multi-user cloud hosting
- β
Conversation history with source attribution
## π How It Works
```
1. Data Collection β 2. Embeddings β 3. Vector Search β 4. Answer Generation
(SAP sources) (sentence- (Supabase (HF Inference
transformers) pgvector) API)
```
**Supported Topics:**
- SAP Basis Administration
- SAP ABAP Development
- SAP HANA
- SAP Fiori & UI5
- SAP Security & Authorization
- SAP BTP (Business Technology Platform)
- SAP Integration Suite
- SAP Performance Tuning
- And more!
## π§ Setup
### 1. Local Development (with Ollama)
```bash
# Clone repo
git clone https://github.com/Akshay-S-PY/sap-chatboot
cd sap-chatboot
# Create virtual environment
python -m venv .venv
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Build dataset
python tools/build_dataset.py
# Run locally
streamlit run app.py
```
### 2. Production (Supabase + HF Spaces)
See [SUPABASE_SETUP.md](./SUPABASE_SETUP.md) for step-by-step cloud deployment.
## π Architecture
```
GitHub Repository (sap-chatboot)
β
GitHub Actions Workflows:
1. build_dataset.yml β Dataset + Upload to HF Hub
2. ingest.yml β Ingest to Supabase
3. deploy_spaces.yml β Deploy to HF Spaces
β
Supabase Database (pgvector + RLS)
β
Streamlit App (HF Spaces)
β
User Query β Vector Search β LLM Response + Sources
```
## π Tech Stack
| Component | Technology | Cost |
|-----------|-----------|------|
| Vector Database | Supabase (pgvector) | Free |
| Embeddings | sentence-transformers | Free |
| LLM API | HuggingFace Inference | Free |
| App Hosting | HF Spaces | Free |
| Data Pipeline | GitHub Actions | Free |
## π‘ Use Cases
- **Quick SAP Questions**: Get instant answers about SAP config, ABAP, Basis
- **Learning**: Understand SAP concepts with cited sources
- **Team Knowledge Base**: Share with your entire team
- **Integration**: Use programmatically via Python API
## π Resources
- π [GitHub Repository](https://github.com/Akshay-S-PY/sap-chatboot)
- π [Supabase](https://supabase.com)
- π€ [HuggingFace](https://huggingface.co)
- π¬ [SAP Community](https://community.sap.com)
## β οΈ Important Notes
- First run builds dataset (~5-10 min)
- Works 100% offline with Ollama
- All data sources are publicly available and respectfully scraped
- No personal data is stored
---
**Made with β€οΈ for the SAP Community**
Have questions? Check the [documentation](./SUPABASE_SETUP.md) or create an [issue](https://github.com/Akshay-S-PY/sap-chatboot/issues).
|