Spaces:
Runtime error
Runtime error
dymaic gen
Browse files- check_app.py +88 -49
check_app.py
CHANGED
|
@@ -1,37 +1,88 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import torch
|
| 3 |
-
from diffusers import
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
# Function to generate images with progress
|
| 12 |
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress()):
|
| 13 |
generator = None
|
| 14 |
if seed is not None:
|
| 15 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
if step_index == None:
|
| 21 |
step_index = 0
|
| 22 |
cur_prg = step_index / num_steps
|
| 23 |
-
print(f"Progressing {cur_prg} Step {step_index}/{num_steps}")
|
| 24 |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
|
| 25 |
return callback_kwargs
|
| 26 |
|
| 27 |
-
if
|
| 28 |
image = pipe(
|
| 29 |
prompt,
|
| 30 |
num_inference_steps=num_steps,
|
| 31 |
guidance_scale=guidance_scale,
|
| 32 |
callback_on_step_end=callback,
|
| 33 |
).images[0]
|
| 34 |
-
|
| 35 |
image = pipe(
|
| 36 |
prompt,
|
| 37 |
num_inference_steps=num_steps,
|
|
@@ -39,58 +90,46 @@ def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, s
|
|
| 39 |
output_type="pil",
|
| 40 |
callback_on_step_end=callback,
|
| 41 |
).images[0]
|
|
|
|
| 42 |
return image
|
| 43 |
|
| 44 |
-
|
| 45 |
-
def
|
| 46 |
-
|
| 47 |
-
@spaces.GPU(duration=170)
|
| 48 |
-
def tab1_logic(prompt_text):
|
| 49 |
progress = gr.Progress()
|
| 50 |
num_steps = 30
|
|
|
|
| 51 |
seed = 42
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
).to("cuda")
|
| 56 |
image = generate_image_with_progress(
|
| 57 |
-
|
| 58 |
)
|
| 59 |
return f"Seed: {seed}", image
|
| 60 |
-
|
| 61 |
-
@spaces.GPU(duration=170)
|
| 62 |
-
def tab2_logic(prompt_text):
|
| 63 |
-
progress = gr.Progress()
|
| 64 |
-
num_steps = 28
|
| 65 |
-
guidance_scale = 3.5
|
| 66 |
-
print(f"Start tab {prompt_text}")
|
| 67 |
-
# Initialize pipelines
|
| 68 |
-
stable_diffusion_pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 69 |
-
"stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16
|
| 70 |
-
).to("cuda")
|
| 71 |
-
image = generate_image_with_progress(
|
| 72 |
-
stable_diffusion_pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, progress=progress
|
| 73 |
-
)
|
| 74 |
-
return "Seed: None", image
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
with gr.Blocks() as app:
|
| 77 |
-
gr.Markdown("# Multiple Model Image Generation
|
| 78 |
|
| 79 |
prompt_text = gr.Textbox(label="Enter prompt")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
output_2 = gr.Textbox(label="Status")
|
| 90 |
-
img_2 = gr.Image(label="StableDiffusion3", height=300)
|
| 91 |
-
button_2.click(fn=tab2_logic, inputs=[prompt_text], outputs=[output_2, img_2])
|
| 92 |
|
| 93 |
app.launch()
|
| 94 |
|
|
|
|
| 95 |
if __name__ == "__main__":
|
| 96 |
main()
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from diffusers import (
|
| 3 |
+
FluxPipeline,
|
| 4 |
+
StableDiffusion3Pipeline,
|
| 5 |
+
PixArtSigmaPipeline,
|
| 6 |
+
SanaPipeline,
|
| 7 |
+
AuraFlowPipeline,
|
| 8 |
+
Kandinsky3Pipeline,
|
| 9 |
+
HunyuanDiTPipeline,
|
| 10 |
+
LuminaText2ImgPipeline,
|
| 11 |
+
OneDiffusionPipeline,
|
| 12 |
+
)
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
+
cache_dir = '/workspace/hf_cache'
|
| 16 |
|
| 17 |
+
MODEL_CONFIGS = {
|
| 18 |
+
"FLUX": {
|
| 19 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
| 20 |
+
"pipeline_class": FluxPipeline,
|
| 21 |
+
"cache_dir": cache_dir,
|
| 22 |
+
},
|
| 23 |
+
"Stable Diffusion 3.5": {
|
| 24 |
+
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
| 25 |
+
"pipeline_class": StableDiffusion3Pipeline,
|
| 26 |
+
"cache_dir": cache_dir,
|
| 27 |
+
},
|
| 28 |
+
"PixArt": {
|
| 29 |
+
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
| 30 |
+
"pipeline_class": PixArtSigmaPipeline,
|
| 31 |
+
"cache_dir": cache_dir,
|
| 32 |
+
},
|
| 33 |
+
"SANA": {
|
| 34 |
+
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
|
| 35 |
+
"pipeline_class": SanaPipeline,
|
| 36 |
+
"cache_dir": cache_dir,
|
| 37 |
+
},
|
| 38 |
+
"AuraFlow": {
|
| 39 |
+
"repo_id": "fal/AuraFlow",
|
| 40 |
+
"pipeline_class": AuraFlowPipeline,
|
| 41 |
+
"cache_dir": cache_dir,
|
| 42 |
+
},
|
| 43 |
+
"Kandinsky": {
|
| 44 |
+
"repo_id": "kandinsky-community/kandinsky-3",
|
| 45 |
+
"pipeline_class": Kandinsky3Pipeline,
|
| 46 |
+
"cache_dir": cache_dir,
|
| 47 |
+
},
|
| 48 |
+
"Hunyuan": {
|
| 49 |
+
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
|
| 50 |
+
"pipeline_class": HunyuanDiTPipeline,
|
| 51 |
+
"cache_dir": cache_dir,
|
| 52 |
+
},
|
| 53 |
+
"Lumina": {
|
| 54 |
+
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
| 55 |
+
"pipeline_class": LuminaText2ImgPipeline,
|
| 56 |
+
"cache_dir": cache_dir,
|
| 57 |
+
},
|
| 58 |
+
"OneDiffusion": {
|
| 59 |
+
"repo_id": "lehduong/OneDiffusion",
|
| 60 |
+
"pipeline_class": OneDiffusionPipeline,
|
| 61 |
+
"cache_dir": cache_dir,
|
| 62 |
+
},
|
| 63 |
+
}
|
| 64 |
|
|
|
|
|
|
|
| 65 |
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress()):
|
| 66 |
generator = None
|
| 67 |
if seed is not None:
|
| 68 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 69 |
+
|
| 70 |
+
def callback(pipe, step_index, timestep, callback_kwargs):
|
| 71 |
+
print(f" callback => {pipe}, {step_index}, {timestep}")
|
| 72 |
+
if step_index is None:
|
|
|
|
| 73 |
step_index = 0
|
| 74 |
cur_prg = step_index / num_steps
|
|
|
|
| 75 |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
|
| 76 |
return callback_kwargs
|
| 77 |
|
| 78 |
+
if hasattr(pipe, "guidance_scale"):
|
| 79 |
image = pipe(
|
| 80 |
prompt,
|
| 81 |
num_inference_steps=num_steps,
|
| 82 |
guidance_scale=guidance_scale,
|
| 83 |
callback_on_step_end=callback,
|
| 84 |
).images[0]
|
| 85 |
+
else:
|
| 86 |
image = pipe(
|
| 87 |
prompt,
|
| 88 |
num_inference_steps=num_steps,
|
|
|
|
| 90 |
output_type="pil",
|
| 91 |
callback_on_step_end=callback,
|
| 92 |
).images[0]
|
| 93 |
+
|
| 94 |
return image
|
| 95 |
|
| 96 |
+
|
| 97 |
+
def create_pipeline_logic(model_name, config):
|
| 98 |
+
def logic(prompt_text):
|
|
|
|
|
|
|
| 99 |
progress = gr.Progress()
|
| 100 |
num_steps = 30
|
| 101 |
+
guidance_scale = 7.5 # Example guidance scale, can be adjusted per model
|
| 102 |
seed = 42
|
| 103 |
+
|
| 104 |
+
pipe_class = config["pipeline_class"]
|
| 105 |
+
pipe = pipe_class.from_pretrained(
|
| 106 |
+
config["repo_id"], cache_dir=config["cache_dir"], torch_dtype=torch.bfloat16
|
| 107 |
).to("cuda")
|
| 108 |
image = generate_image_with_progress(
|
| 109 |
+
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
|
| 110 |
)
|
| 111 |
return f"Seed: {seed}", image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
return logic
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def main():
|
| 117 |
with gr.Blocks() as app:
|
| 118 |
+
gr.Markdown("# Dynamic Multiple Model Image Generation")
|
| 119 |
|
| 120 |
prompt_text = gr.Textbox(label="Enter prompt")
|
| 121 |
|
| 122 |
+
for model_name, config in MODEL_CONFIGS.items():
|
| 123 |
+
with gr.Tab(model_name):
|
| 124 |
+
button = gr.Button(f"Run {model_name}")
|
| 125 |
+
output = gr.Textbox(label="Status")
|
| 126 |
+
img = gr.Image(label=model_name, height=300)
|
| 127 |
|
| 128 |
+
logic = create_pipeline_logic(model_name, config)
|
| 129 |
+
button.click(fn=logic, inputs=[prompt_text], outputs=[output, img])
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
app.launch()
|
| 132 |
|
| 133 |
+
|
| 134 |
if __name__ == "__main__":
|
| 135 |
main()
|