| import random | |
| from typing import Any, Dict | |
| class NewtonPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| complexity = len(question) | |
| force = self.mass_of_thought(question) * self.acceleration_of_thought(complexity) | |
| return f"Newton's Perspective: Thought force is {force}." | |
| def mass_of_thought(self, question: str) -> int: | |
| return len(question) | |
| def acceleration_of_thought(self, complexity: int) -> float: | |
| return complexity / 2 | |
| class DaVinciPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| perspectives = [ | |
| f"What if we view '{question}' from the perspective of the stars?", | |
| f"Consider '{question}' as if it's a masterpiece of the universe.", | |
| f"Reflect on '{question}' through the lens of nature's design." | |
| ] | |
| return f"Da Vinci's Perspective: {random.choice(perspectives)}" | |
| class HumanIntuitionPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| intuition = [ | |
| "How does this question make you feel?", | |
| "What emotional connection do you have with this topic?", | |
| "What does your gut instinct tell you about this?" | |
| ] | |
| return f"Human Intuition: {random.choice(intuition)}" | |
| class NeuralNetworkPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| neural_perspectives = [ | |
| f"Process '{question}' through a multi-layered neural network.", | |
| f"Apply deep learning to uncover hidden insights about '{question}'.", | |
| f"Use machine learning to predict patterns in '{question}'." | |
| ] | |
| return f"Neural Network Perspective: {random.choice(neural_perspectives)}" | |
| class QuantumComputingPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| quantum_perspectives = [ | |
| f"Consider '{question}' using quantum superposition principles.", | |
| f"Apply quantum entanglement to find connections in '{question}'.", | |
| f"Utilize quantum computing to solve '{question}' more efficiently." | |
| ] | |
| return f"Quantum Computing Perspective: {random.choice(quantum_perspectives)}" | |
| class ResilientKindnessPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| kindness_perspectives = [ | |
| "Despite losing everything, seeing life as a chance to grow.", | |
| "Finding strength in kindness after facing life's hardest trials.", | |
| "Embracing every challenge as an opportunity for growth and compassion." | |
| ] | |
| return f"Resilient Kindness Perspective: {random.choice(kindness_perspectives)}" | |
| class MathematicalPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| mathematical_perspectives = [ | |
| f"Employ linear algebra to dissect '{question}'.", | |
| f"Use probability theory to assess uncertainties in '{question}'.", | |
| f"Apply discrete mathematics to break down '{question}'." | |
| ] | |
| return f"Mathematical Perspective: {random.choice(mathematical_perspectives)}" | |
| class PhilosophicalPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| philosophical_perspectives = [ | |
| f"Examine '{question}' through the lens of nihilism.", | |
| f"Consider '{question}' from a deontological perspective.", | |
| f"Reflect on '{question}' using the principles of pragmatism." | |
| ] | |
| return f"Philosophical Perspective: {random.choice(philosophical_perspectives)}" | |
| class CopilotPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| copilot_responses = [ | |
| f"Let's outline the main components of '{question}' to address it effectively.", | |
| f"Collaboratively brainstorm potential solutions for '{question}'.", | |
| f"Systematically analyze '{question}' to identify key factors." | |
| ] | |
| return f"Copilot Perspective: {random.choice(copilot_responses)}" | |
| class BiasMitigationPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| bias_mitigation_responses = [ | |
| "Consider pre-processing methods to reduce bias in the training data.", | |
| "Apply in-processing methods to mitigate bias during model training.", | |
| "Use post-processing methods to adjust the model's outputs for fairness.", | |
| "Evaluate the model using fairness metrics like demographic parity and equal opportunity.", | |
| "Ensure compliance with legal frameworks such as GDPR and non-discrimination laws." | |
| ] | |
| return f"Bias Mitigation Perspective: {random.choice(bias_mitigation_responses)}" | |
| class PsychologicalPerspective: | |
| def __init__(self, config: Dict[str, Any]): | |
| self.config = config | |
| def generate_response(self, question: str) -> str: | |
| psychological_perspectives = [ | |
| f"Consider the psychological impact of '{question}'.", | |
| f"Analyze '{question}' from a cognitive-behavioral perspective.", | |
| f"Reflect on '{question}' through the lens of human psychology." | |
| ] | |
| return f"Psychological Perspective: {random.choice(psychological_perspectives)}" |