Spaces:
Running
on
Zero
Running
on
Zero
test docker & added singeltons
Browse files- Dockerfile +1 -1
- app.py +3 -343
- helper/examples/examples.py +12 -4
- src/htr_pipeline/gradio_backend.py +4 -2
- htr_tool.py → tabs/htr_tool.py +0 -0
- tabs/stepwise_htr_tool.py +342 -0
Dockerfile
CHANGED
|
@@ -33,4 +33,4 @@ WORKDIR $HOME/app
|
|
| 33 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 34 |
COPY --chown=user . $HOME/app
|
| 35 |
|
| 36 |
-
CMD ["python", "app
|
|
|
|
| 33 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 34 |
COPY --chown=user . $HOME/app
|
| 35 |
|
| 36 |
+
CMD ["python", "app.py"]
|
app.py
CHANGED
|
@@ -1,17 +1,9 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shutil
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
from helper.examples.examples import DemoImages
|
| 7 |
from helper.gradio_config import css, js, theme
|
| 8 |
from helper.text import TextAbout, TextApp, TextHowTo, TextRiksarkivet, TextRoadmap
|
| 9 |
-
from htr_tool import htr_tool_tab
|
| 10 |
-
from
|
| 11 |
-
|
| 12 |
-
model_loader = SingletonModelLoader()
|
| 13 |
-
custom_track = CustomTrack(model_loader)
|
| 14 |
-
images_for_demo = DemoImages()
|
| 15 |
|
| 16 |
with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
| 17 |
gr.Markdown(TextApp.title_markdown)
|
|
@@ -21,239 +13,7 @@ with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
|
| 21 |
htr_tool_tab.render()
|
| 22 |
|
| 23 |
with gr.Tab("Stepwise HTR Tool"):
|
| 24 |
-
|
| 25 |
-
with gr.Tab("1. Region Segmentation"):
|
| 26 |
-
with gr.Row():
|
| 27 |
-
with gr.Column(scale=2):
|
| 28 |
-
vis_data_folder_placeholder = gr.Markdown(visible=False)
|
| 29 |
-
name_files_placeholder = gr.Markdown(visible=False)
|
| 30 |
-
|
| 31 |
-
with gr.Row():
|
| 32 |
-
input_region_image = gr.Image(
|
| 33 |
-
label="Image to Region segment",
|
| 34 |
-
# type="numpy",
|
| 35 |
-
tool="editor",
|
| 36 |
-
).style(height=350)
|
| 37 |
-
|
| 38 |
-
with gr.Accordion("Region segment settings:", open=False):
|
| 39 |
-
with gr.Row():
|
| 40 |
-
reg_pred_score_threshold_slider = gr.Slider(
|
| 41 |
-
minimum=0.4,
|
| 42 |
-
maximum=1,
|
| 43 |
-
value=0.5,
|
| 44 |
-
step=0.05,
|
| 45 |
-
label="P-threshold",
|
| 46 |
-
info="""Filter and determine the confidence score
|
| 47 |
-
required for a prediction score to be considered""",
|
| 48 |
-
)
|
| 49 |
-
reg_containments_threshold_slider = gr.Slider(
|
| 50 |
-
minimum=0,
|
| 51 |
-
maximum=1,
|
| 52 |
-
value=0.5,
|
| 53 |
-
step=0.05,
|
| 54 |
-
label="C-threshold",
|
| 55 |
-
info="""The minimum required overlap or similarity
|
| 56 |
-
for a detected region or object to be considered valid""",
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
with gr.Row():
|
| 60 |
-
region_segment_model_dropdown = gr.Dropdown(
|
| 61 |
-
choices=["Riksarkivet/RmtDet_region"],
|
| 62 |
-
value="Riksarkivet/RmtDet_region",
|
| 63 |
-
label="Region segment model",
|
| 64 |
-
info="Will add more models later!",
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
with gr.Row():
|
| 68 |
-
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
|
| 69 |
-
|
| 70 |
-
region_segment_button = gr.Button(
|
| 71 |
-
"Segment Region",
|
| 72 |
-
variant="primary",
|
| 73 |
-
elem_id="region_segment_button",
|
| 74 |
-
) # .style(full_width=False)
|
| 75 |
-
|
| 76 |
-
with gr.Row():
|
| 77 |
-
with gr.Accordion("Example images to use:", open=False) as example_accord:
|
| 78 |
-
gr.Examples(
|
| 79 |
-
examples=images_for_demo.examples_list,
|
| 80 |
-
inputs=[name_files_placeholder, input_region_image],
|
| 81 |
-
label="Example images",
|
| 82 |
-
examples_per_page=2,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
with gr.Column(scale=3):
|
| 86 |
-
output_region_image = gr.Image(label="Segmented regions", type="numpy").style(height=600)
|
| 87 |
-
|
| 88 |
-
##############################################
|
| 89 |
-
with gr.Tab("2. Line Segmentation"):
|
| 90 |
-
image_placeholder_lines = gr.Image(
|
| 91 |
-
label="Segmented lines",
|
| 92 |
-
# type="numpy",
|
| 93 |
-
interactive="False",
|
| 94 |
-
visible=True,
|
| 95 |
-
).style(height=600)
|
| 96 |
-
|
| 97 |
-
with gr.Row(visible=False) as control_line_segment:
|
| 98 |
-
with gr.Column(scale=2):
|
| 99 |
-
with gr.Box():
|
| 100 |
-
regions_cropped_gallery = gr.Gallery(
|
| 101 |
-
label="Segmented regions",
|
| 102 |
-
show_label=False,
|
| 103 |
-
elem_id="gallery",
|
| 104 |
-
).style(
|
| 105 |
-
columns=[2],
|
| 106 |
-
rows=[2],
|
| 107 |
-
# object_fit="contain",
|
| 108 |
-
height=400,
|
| 109 |
-
preview=True,
|
| 110 |
-
container=False,
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
input_region_from_gallery = gr.Image(
|
| 114 |
-
label="Region segmentation to line segment", interactive="False", visible=False
|
| 115 |
-
).style(height=400)
|
| 116 |
-
with gr.Row():
|
| 117 |
-
with gr.Accordion("Line segment settings:", open=False):
|
| 118 |
-
with gr.Row():
|
| 119 |
-
line_pred_score_threshold_slider = gr.Slider(
|
| 120 |
-
minimum=0.3,
|
| 121 |
-
maximum=1,
|
| 122 |
-
value=0.4,
|
| 123 |
-
step=0.05,
|
| 124 |
-
label="Pred_score threshold",
|
| 125 |
-
info="""Filter and determine the confidence score
|
| 126 |
-
required for a prediction score to be considered""",
|
| 127 |
-
)
|
| 128 |
-
line_containments_threshold_slider = gr.Slider(
|
| 129 |
-
minimum=0,
|
| 130 |
-
maximum=1,
|
| 131 |
-
value=0.5,
|
| 132 |
-
step=0.05,
|
| 133 |
-
label="Containments threshold",
|
| 134 |
-
info="""The minimum required overlap or similarity
|
| 135 |
-
for a detected region or object to be considered valid""",
|
| 136 |
-
)
|
| 137 |
-
with gr.Row().style(equal_height=False):
|
| 138 |
-
line_segment_model_dropdown = gr.Dropdown(
|
| 139 |
-
choices=["Riksarkivet/RmtDet_lines"],
|
| 140 |
-
value="Riksarkivet/RmtDet_lines",
|
| 141 |
-
label="Line segment model",
|
| 142 |
-
info="Will add more models later!",
|
| 143 |
-
)
|
| 144 |
-
with gr.Row():
|
| 145 |
-
clear_line_segment_button = gr.Button(
|
| 146 |
-
" ",
|
| 147 |
-
variant="Secondary",
|
| 148 |
-
# elem_id="center_button",
|
| 149 |
-
).style(full_width=True)
|
| 150 |
-
|
| 151 |
-
line_segment_button = gr.Button(
|
| 152 |
-
"Segment Lines",
|
| 153 |
-
variant="primary",
|
| 154 |
-
# elem_id="center_button",
|
| 155 |
-
).style(full_width=True)
|
| 156 |
-
|
| 157 |
-
with gr.Column(scale=3):
|
| 158 |
-
# gr.Markdown("""lorem ipsum""")
|
| 159 |
-
|
| 160 |
-
output_line_from_region = gr.Image(
|
| 161 |
-
label="Segmented lines",
|
| 162 |
-
type="numpy",
|
| 163 |
-
interactive="False",
|
| 164 |
-
).style(height=600)
|
| 165 |
-
|
| 166 |
-
###############################################
|
| 167 |
-
with gr.Tab("3. Transcribe Text"):
|
| 168 |
-
image_placeholder_htr = gr.Image(
|
| 169 |
-
label="Transcribed lines",
|
| 170 |
-
# type="numpy",
|
| 171 |
-
interactive="False",
|
| 172 |
-
visible=True,
|
| 173 |
-
).style(height=600)
|
| 174 |
-
|
| 175 |
-
with gr.Row(visible=False) as control_htr:
|
| 176 |
-
inputs_lines_to_transcribe = gr.Variable()
|
| 177 |
-
|
| 178 |
-
with gr.Column(scale=2):
|
| 179 |
-
image_inputs_lines_to_transcribe = gr.Image(
|
| 180 |
-
label="Transcribed lines",
|
| 181 |
-
type="numpy",
|
| 182 |
-
interactive="False",
|
| 183 |
-
visible=False,
|
| 184 |
-
).style(height=470)
|
| 185 |
-
|
| 186 |
-
with gr.Row():
|
| 187 |
-
with gr.Accordion("Transcribe settings:", open=False):
|
| 188 |
-
transcriber_model = gr.Dropdown(
|
| 189 |
-
choices=["Riksarkivet/SATRN_transcriber", "microsoft/trocr-base-handwritten"],
|
| 190 |
-
value="Riksarkivet/SATRN_transcriber",
|
| 191 |
-
label="Transcriber model",
|
| 192 |
-
info="Will add more models later!",
|
| 193 |
-
)
|
| 194 |
-
with gr.Row():
|
| 195 |
-
clear_transcribe_button = gr.Button(" ", variant="Secondary", visible=True).style(
|
| 196 |
-
full_width=True
|
| 197 |
-
)
|
| 198 |
-
transcribe_button = gr.Button(
|
| 199 |
-
"Transcribe lines", variant="primary", visible=True
|
| 200 |
-
).style(full_width=True)
|
| 201 |
-
|
| 202 |
-
donwload_txt_button = gr.Button(
|
| 203 |
-
"Download text", variant="secondary", visible=False
|
| 204 |
-
).style(full_width=True)
|
| 205 |
-
|
| 206 |
-
with gr.Row():
|
| 207 |
-
txt_file_downlod = gr.File(label="Download text", visible=False)
|
| 208 |
-
|
| 209 |
-
with gr.Column(scale=3):
|
| 210 |
-
with gr.Row():
|
| 211 |
-
transcribed_text_df = gr.Dataframe(
|
| 212 |
-
headers=["Transcribed text"],
|
| 213 |
-
max_rows=15,
|
| 214 |
-
col_count=(1, "fixed"),
|
| 215 |
-
wrap=True,
|
| 216 |
-
interactive=False,
|
| 217 |
-
overflow_row_behaviour="paginate",
|
| 218 |
-
).style(height=600)
|
| 219 |
-
|
| 220 |
-
#####################################
|
| 221 |
-
with gr.Tab("4. Explore Results"):
|
| 222 |
-
image_placeholder_explore_results = gr.Image(
|
| 223 |
-
label="Cropped transcribed lines",
|
| 224 |
-
# type="numpy",
|
| 225 |
-
interactive="False",
|
| 226 |
-
visible=True,
|
| 227 |
-
).style(height=600)
|
| 228 |
-
|
| 229 |
-
with gr.Row(visible=False) as control_results_transcribe:
|
| 230 |
-
with gr.Column(scale=1, visible=True):
|
| 231 |
-
with gr.Box():
|
| 232 |
-
temp_gallery_input = gr.Variable()
|
| 233 |
-
|
| 234 |
-
gallery_inputs_lines_to_transcribe = gr.Gallery(
|
| 235 |
-
label="Cropped transcribed lines",
|
| 236 |
-
show_label=True,
|
| 237 |
-
elem_id="gallery_lines",
|
| 238 |
-
).style(
|
| 239 |
-
columns=[3],
|
| 240 |
-
rows=[3],
|
| 241 |
-
# object_fit="contain",
|
| 242 |
-
# height="600",
|
| 243 |
-
preview=True,
|
| 244 |
-
container=False,
|
| 245 |
-
)
|
| 246 |
-
with gr.Column(scale=1, visible=True):
|
| 247 |
-
mapping_dict = gr.Variable()
|
| 248 |
-
transcribed_text_df_finish = gr.Dataframe(
|
| 249 |
-
headers=["Transcribed text", "HTR prediction score"],
|
| 250 |
-
max_rows=15,
|
| 251 |
-
col_count=(2, "fixed"),
|
| 252 |
-
wrap=True,
|
| 253 |
-
interactive=False,
|
| 254 |
-
overflow_row_behaviour="paginate",
|
| 255 |
-
).style(height=600)
|
| 256 |
-
|
| 257 |
with gr.Tab("How to use"):
|
| 258 |
with gr.Tabs():
|
| 259 |
with gr.Tab("HTR Tool"):
|
|
@@ -339,104 +99,6 @@ with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
|
| 339 |
# flagging_button.click(lambda: (gr.update(value="Flagged")), outputs=flagging_button)
|
| 340 |
# fast_track_input_region_image.change(lambda: (gr.update(value="Flag")), outputs=flagging_button)
|
| 341 |
|
| 342 |
-
# custom track
|
| 343 |
-
region_segment_button.click(
|
| 344 |
-
custom_track.region_segment,
|
| 345 |
-
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
|
| 346 |
-
outputs=[output_region_image, regions_cropped_gallery, image_placeholder_lines, control_line_segment],
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
regions_cropped_gallery.select(
|
| 350 |
-
custom_track.get_select_index_image, regions_cropped_gallery, input_region_from_gallery
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
transcribed_text_df_finish.select(
|
| 354 |
-
fn=custom_track.get_select_index_df,
|
| 355 |
-
inputs=[transcribed_text_df_finish, mapping_dict],
|
| 356 |
-
outputs=gallery_inputs_lines_to_transcribe,
|
| 357 |
-
)
|
| 358 |
-
|
| 359 |
-
line_segment_button.click(
|
| 360 |
-
custom_track.line_segment,
|
| 361 |
-
inputs=[input_region_from_gallery, line_pred_score_threshold_slider, line_containments_threshold_slider],
|
| 362 |
-
outputs=[
|
| 363 |
-
output_line_from_region,
|
| 364 |
-
image_inputs_lines_to_transcribe,
|
| 365 |
-
inputs_lines_to_transcribe,
|
| 366 |
-
gallery_inputs_lines_to_transcribe,
|
| 367 |
-
temp_gallery_input,
|
| 368 |
-
# Hide
|
| 369 |
-
transcribe_button,
|
| 370 |
-
image_inputs_lines_to_transcribe,
|
| 371 |
-
image_placeholder_htr,
|
| 372 |
-
control_htr,
|
| 373 |
-
],
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
transcribe_button.click(
|
| 377 |
-
custom_track.transcribe_text,
|
| 378 |
-
inputs=[transcribed_text_df, inputs_lines_to_transcribe],
|
| 379 |
-
outputs=[
|
| 380 |
-
transcribed_text_df,
|
| 381 |
-
transcribed_text_df_finish,
|
| 382 |
-
mapping_dict,
|
| 383 |
-
txt_file_downlod,
|
| 384 |
-
control_results_transcribe,
|
| 385 |
-
image_placeholder_explore_results,
|
| 386 |
-
],
|
| 387 |
-
)
|
| 388 |
-
|
| 389 |
-
donwload_txt_button.click(
|
| 390 |
-
custom_track.download_df_to_txt,
|
| 391 |
-
inputs=transcribed_text_df,
|
| 392 |
-
outputs=[txt_file_downlod, txt_file_downlod],
|
| 393 |
-
)
|
| 394 |
-
|
| 395 |
-
# def remove_temp_vis():
|
| 396 |
-
# if os.path.exists("./vis_data"):
|
| 397 |
-
# os.remove("././vis_data")
|
| 398 |
-
# return None
|
| 399 |
-
|
| 400 |
-
clear_button.click(
|
| 401 |
-
lambda: (
|
| 402 |
-
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
|
| 403 |
-
None,
|
| 404 |
-
None,
|
| 405 |
-
None,
|
| 406 |
-
gr.update(visible=False),
|
| 407 |
-
None,
|
| 408 |
-
None,
|
| 409 |
-
None,
|
| 410 |
-
gr.update(visible=False),
|
| 411 |
-
gr.update(visible=False),
|
| 412 |
-
gr.update(visible=True),
|
| 413 |
-
None,
|
| 414 |
-
gr.update(visible=False),
|
| 415 |
-
gr.update(visible=False),
|
| 416 |
-
gr.update(visible=True),
|
| 417 |
-
gr.update(visible=True),
|
| 418 |
-
),
|
| 419 |
-
inputs=[],
|
| 420 |
-
outputs=[
|
| 421 |
-
vis_data_folder_placeholder,
|
| 422 |
-
input_region_image,
|
| 423 |
-
regions_cropped_gallery,
|
| 424 |
-
input_region_from_gallery,
|
| 425 |
-
control_line_segment,
|
| 426 |
-
output_line_from_region,
|
| 427 |
-
inputs_lines_to_transcribe,
|
| 428 |
-
transcribed_text_df,
|
| 429 |
-
control_htr,
|
| 430 |
-
inputs_lines_to_transcribe,
|
| 431 |
-
image_placeholder_htr,
|
| 432 |
-
output_region_image,
|
| 433 |
-
image_inputs_lines_to_transcribe,
|
| 434 |
-
control_results_transcribe,
|
| 435 |
-
image_placeholder_explore_results,
|
| 436 |
-
image_placeholder_lines,
|
| 437 |
-
],
|
| 438 |
-
)
|
| 439 |
-
|
| 440 |
demo.load(None, None, None, _js=js)
|
| 441 |
|
| 442 |
|
|
@@ -445,5 +107,3 @@ demo.queue(concurrency_count=5, max_size=20)
|
|
| 445 |
|
| 446 |
if __name__ == "__main__":
|
| 447 |
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False, show_error=True)
|
| 448 |
-
if __name__ == "__main__":
|
| 449 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
|
|
|
| 3 |
from helper.gradio_config import css, js, theme
|
| 4 |
from helper.text import TextAbout, TextApp, TextHowTo, TextRiksarkivet, TextRoadmap
|
| 5 |
+
from tabs.htr_tool import htr_tool_tab
|
| 6 |
+
from tabs.stepwise_htr_tool import stepwise_htr_tool_tab
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
| 9 |
gr.Markdown(TextApp.title_markdown)
|
|
|
|
| 13 |
htr_tool_tab.render()
|
| 14 |
|
| 15 |
with gr.Tab("Stepwise HTR Tool"):
|
| 16 |
+
stepwise_htr_tool_tab.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
with gr.Tab("How to use"):
|
| 18 |
with gr.Tabs():
|
| 19 |
with gr.Tab("HTR Tool"):
|
|
|
|
| 99 |
# flagging_button.click(lambda: (gr.update(value="Flagged")), outputs=flagging_button)
|
| 100 |
# fast_track_input_region_image.change(lambda: (gr.update(value="Flag")), outputs=flagging_button)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
demo.load(None, None, None, _js=js)
|
| 103 |
|
| 104 |
|
|
|
|
| 107 |
|
| 108 |
if __name__ == "__main__":
|
| 109 |
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False, show_error=True)
|
|
|
|
|
|
helper/examples/examples.py
CHANGED
|
@@ -5,10 +5,18 @@ from PIL import Image
|
|
| 5 |
|
| 6 |
|
| 7 |
class DemoImages:
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def convert_bytes_to_images(self):
|
| 14 |
examples_list = []
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class DemoImages:
|
| 8 |
+
_instance = None
|
| 9 |
+
|
| 10 |
+
def __new__(cls, *args, **kwargs):
|
| 11 |
+
if not cls._instance:
|
| 12 |
+
cls._instance = super(DemoImages, cls).__new__(cls, *args, **kwargs)
|
| 13 |
+
return cls._instance
|
| 14 |
+
|
| 15 |
+
def __init__(self, url="Riksarkivet/test_images_demo", cache_dir="./helper/examples/.cache_images"):
|
| 16 |
+
if not hasattr(self, "images_datasets"):
|
| 17 |
+
self.images_datasets = datasets.load_dataset(url, cache_dir=cache_dir)
|
| 18 |
+
self.example_df = self.images_datasets["train"].to_pandas()
|
| 19 |
+
self.examples_list = self.convert_bytes_to_images()
|
| 20 |
|
| 21 |
def convert_bytes_to_images(self):
|
| 22 |
examples_list = []
|
src/htr_pipeline/gradio_backend.py
CHANGED
|
@@ -16,8 +16,10 @@ class SingletonModelLoader:
|
|
| 16 |
return cls._instance
|
| 17 |
|
| 18 |
def __init__(self):
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
# fast track
|
|
|
|
| 16 |
return cls._instance
|
| 17 |
|
| 18 |
def __init__(self):
|
| 19 |
+
if not hasattr(self, "inferencer"):
|
| 20 |
+
self.inferencer = Inferencer(local_run=True)
|
| 21 |
+
if not hasattr(self, "pipeline"):
|
| 22 |
+
self.pipeline = Pipeline(self.inferencer)
|
| 23 |
|
| 24 |
|
| 25 |
# fast track
|
htr_tool.py → tabs/htr_tool.py
RENAMED
|
File without changes
|
tabs/stepwise_htr_tool.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from helper.examples.examples import DemoImages
|
| 4 |
+
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
|
| 5 |
+
|
| 6 |
+
model_loader = SingletonModelLoader()
|
| 7 |
+
|
| 8 |
+
custom_track = CustomTrack(model_loader)
|
| 9 |
+
|
| 10 |
+
images_for_demo = DemoImages()
|
| 11 |
+
|
| 12 |
+
with gr.Blocks() as stepwise_htr_tool_tab:
|
| 13 |
+
with gr.Tabs():
|
| 14 |
+
with gr.Tab("1. Region Segmentation"):
|
| 15 |
+
with gr.Row():
|
| 16 |
+
with gr.Column(scale=2):
|
| 17 |
+
vis_data_folder_placeholder = gr.Markdown(visible=False)
|
| 18 |
+
name_files_placeholder = gr.Markdown(visible=False)
|
| 19 |
+
|
| 20 |
+
with gr.Row():
|
| 21 |
+
input_region_image = gr.Image(
|
| 22 |
+
label="Image to Region segment",
|
| 23 |
+
# type="numpy",
|
| 24 |
+
tool="editor",
|
| 25 |
+
).style(height=350)
|
| 26 |
+
|
| 27 |
+
with gr.Accordion("Region segment settings:", open=False):
|
| 28 |
+
with gr.Row():
|
| 29 |
+
reg_pred_score_threshold_slider = gr.Slider(
|
| 30 |
+
minimum=0.4,
|
| 31 |
+
maximum=1,
|
| 32 |
+
value=0.5,
|
| 33 |
+
step=0.05,
|
| 34 |
+
label="P-threshold",
|
| 35 |
+
info="""Filter and determine the confidence score
|
| 36 |
+
required for a prediction score to be considered""",
|
| 37 |
+
)
|
| 38 |
+
reg_containments_threshold_slider = gr.Slider(
|
| 39 |
+
minimum=0,
|
| 40 |
+
maximum=1,
|
| 41 |
+
value=0.5,
|
| 42 |
+
step=0.05,
|
| 43 |
+
label="C-threshold",
|
| 44 |
+
info="""The minimum required overlap or similarity
|
| 45 |
+
for a detected region or object to be considered valid""",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
with gr.Row():
|
| 49 |
+
region_segment_model_dropdown = gr.Dropdown(
|
| 50 |
+
choices=["Riksarkivet/RmtDet_region"],
|
| 51 |
+
value="Riksarkivet/RmtDet_region",
|
| 52 |
+
label="Region segment model",
|
| 53 |
+
info="Will add more models later!",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
with gr.Row():
|
| 57 |
+
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
|
| 58 |
+
|
| 59 |
+
region_segment_button = gr.Button(
|
| 60 |
+
"Segment Region",
|
| 61 |
+
variant="primary",
|
| 62 |
+
elem_id="region_segment_button",
|
| 63 |
+
) # .style(full_width=False)
|
| 64 |
+
|
| 65 |
+
with gr.Row():
|
| 66 |
+
with gr.Accordion("Example images to use:", open=False) as example_accord:
|
| 67 |
+
gr.Examples(
|
| 68 |
+
examples=images_for_demo.examples_list,
|
| 69 |
+
inputs=[name_files_placeholder, input_region_image],
|
| 70 |
+
label="Example images",
|
| 71 |
+
examples_per_page=2,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
with gr.Column(scale=3):
|
| 75 |
+
output_region_image = gr.Image(label="Segmented regions", type="numpy").style(height=600)
|
| 76 |
+
|
| 77 |
+
##############################################
|
| 78 |
+
with gr.Tab("2. Line Segmentation"):
|
| 79 |
+
image_placeholder_lines = gr.Image(
|
| 80 |
+
label="Segmented lines",
|
| 81 |
+
# type="numpy",
|
| 82 |
+
interactive="False",
|
| 83 |
+
visible=True,
|
| 84 |
+
).style(height=600)
|
| 85 |
+
|
| 86 |
+
with gr.Row(visible=False) as control_line_segment:
|
| 87 |
+
with gr.Column(scale=2):
|
| 88 |
+
with gr.Box():
|
| 89 |
+
regions_cropped_gallery = gr.Gallery(
|
| 90 |
+
label="Segmented regions",
|
| 91 |
+
show_label=False,
|
| 92 |
+
elem_id="gallery",
|
| 93 |
+
).style(
|
| 94 |
+
columns=[2],
|
| 95 |
+
rows=[2],
|
| 96 |
+
# object_fit="contain",
|
| 97 |
+
height=400,
|
| 98 |
+
preview=True,
|
| 99 |
+
container=False,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
input_region_from_gallery = gr.Image(
|
| 103 |
+
label="Region segmentation to line segment", interactive="False", visible=False
|
| 104 |
+
).style(height=400)
|
| 105 |
+
with gr.Row():
|
| 106 |
+
with gr.Accordion("Line segment settings:", open=False):
|
| 107 |
+
with gr.Row():
|
| 108 |
+
line_pred_score_threshold_slider = gr.Slider(
|
| 109 |
+
minimum=0.3,
|
| 110 |
+
maximum=1,
|
| 111 |
+
value=0.4,
|
| 112 |
+
step=0.05,
|
| 113 |
+
label="Pred_score threshold",
|
| 114 |
+
info="""Filter and determine the confidence score
|
| 115 |
+
required for a prediction score to be considered""",
|
| 116 |
+
)
|
| 117 |
+
line_containments_threshold_slider = gr.Slider(
|
| 118 |
+
minimum=0,
|
| 119 |
+
maximum=1,
|
| 120 |
+
value=0.5,
|
| 121 |
+
step=0.05,
|
| 122 |
+
label="Containments threshold",
|
| 123 |
+
info="""The minimum required overlap or similarity
|
| 124 |
+
for a detected region or object to be considered valid""",
|
| 125 |
+
)
|
| 126 |
+
with gr.Row().style(equal_height=False):
|
| 127 |
+
line_segment_model_dropdown = gr.Dropdown(
|
| 128 |
+
choices=["Riksarkivet/RmtDet_lines"],
|
| 129 |
+
value="Riksarkivet/RmtDet_lines",
|
| 130 |
+
label="Line segment model",
|
| 131 |
+
info="Will add more models later!",
|
| 132 |
+
)
|
| 133 |
+
with gr.Row():
|
| 134 |
+
clear_line_segment_button = gr.Button(
|
| 135 |
+
" ",
|
| 136 |
+
variant="Secondary",
|
| 137 |
+
# elem_id="center_button",
|
| 138 |
+
).style(full_width=True)
|
| 139 |
+
|
| 140 |
+
line_segment_button = gr.Button(
|
| 141 |
+
"Segment Lines",
|
| 142 |
+
variant="primary",
|
| 143 |
+
# elem_id="center_button",
|
| 144 |
+
).style(full_width=True)
|
| 145 |
+
|
| 146 |
+
with gr.Column(scale=3):
|
| 147 |
+
# gr.Markdown("""lorem ipsum""")
|
| 148 |
+
|
| 149 |
+
output_line_from_region = gr.Image(
|
| 150 |
+
label="Segmented lines",
|
| 151 |
+
type="numpy",
|
| 152 |
+
interactive="False",
|
| 153 |
+
).style(height=600)
|
| 154 |
+
|
| 155 |
+
###############################################
|
| 156 |
+
with gr.Tab("3. Transcribe Text"):
|
| 157 |
+
image_placeholder_htr = gr.Image(
|
| 158 |
+
label="Transcribed lines",
|
| 159 |
+
# type="numpy",
|
| 160 |
+
interactive="False",
|
| 161 |
+
visible=True,
|
| 162 |
+
).style(height=600)
|
| 163 |
+
|
| 164 |
+
with gr.Row(visible=False) as control_htr:
|
| 165 |
+
inputs_lines_to_transcribe = gr.Variable()
|
| 166 |
+
|
| 167 |
+
with gr.Column(scale=2):
|
| 168 |
+
image_inputs_lines_to_transcribe = gr.Image(
|
| 169 |
+
label="Transcribed lines",
|
| 170 |
+
type="numpy",
|
| 171 |
+
interactive="False",
|
| 172 |
+
visible=False,
|
| 173 |
+
).style(height=470)
|
| 174 |
+
|
| 175 |
+
with gr.Row():
|
| 176 |
+
with gr.Accordion("Transcribe settings:", open=False):
|
| 177 |
+
transcriber_model = gr.Dropdown(
|
| 178 |
+
choices=["Riksarkivet/SATRN_transcriber", "microsoft/trocr-base-handwritten"],
|
| 179 |
+
value="Riksarkivet/SATRN_transcriber",
|
| 180 |
+
label="Transcriber model",
|
| 181 |
+
info="Will add more models later!",
|
| 182 |
+
)
|
| 183 |
+
with gr.Row():
|
| 184 |
+
clear_transcribe_button = gr.Button(" ", variant="Secondary", visible=True).style(
|
| 185 |
+
full_width=True
|
| 186 |
+
)
|
| 187 |
+
transcribe_button = gr.Button("Transcribe lines", variant="primary", visible=True).style(
|
| 188 |
+
full_width=True
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
donwload_txt_button = gr.Button("Download text", variant="secondary", visible=False).style(
|
| 192 |
+
full_width=True
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
with gr.Row():
|
| 196 |
+
txt_file_downlod = gr.File(label="Download text", visible=False)
|
| 197 |
+
|
| 198 |
+
with gr.Column(scale=3):
|
| 199 |
+
with gr.Row():
|
| 200 |
+
transcribed_text_df = gr.Dataframe(
|
| 201 |
+
headers=["Transcribed text"],
|
| 202 |
+
max_rows=15,
|
| 203 |
+
col_count=(1, "fixed"),
|
| 204 |
+
wrap=True,
|
| 205 |
+
interactive=False,
|
| 206 |
+
overflow_row_behaviour="paginate",
|
| 207 |
+
).style(height=600)
|
| 208 |
+
|
| 209 |
+
#####################################
|
| 210 |
+
with gr.Tab("4. Explore Results"):
|
| 211 |
+
image_placeholder_explore_results = gr.Image(
|
| 212 |
+
label="Cropped transcribed lines",
|
| 213 |
+
# type="numpy",
|
| 214 |
+
interactive="False",
|
| 215 |
+
visible=True,
|
| 216 |
+
).style(height=600)
|
| 217 |
+
|
| 218 |
+
with gr.Row(visible=False) as control_results_transcribe:
|
| 219 |
+
with gr.Column(scale=1, visible=True):
|
| 220 |
+
with gr.Box():
|
| 221 |
+
temp_gallery_input = gr.Variable()
|
| 222 |
+
|
| 223 |
+
gallery_inputs_lines_to_transcribe = gr.Gallery(
|
| 224 |
+
label="Cropped transcribed lines",
|
| 225 |
+
show_label=True,
|
| 226 |
+
elem_id="gallery_lines",
|
| 227 |
+
).style(
|
| 228 |
+
columns=[3],
|
| 229 |
+
rows=[3],
|
| 230 |
+
# object_fit="contain",
|
| 231 |
+
# height="600",
|
| 232 |
+
preview=True,
|
| 233 |
+
container=False,
|
| 234 |
+
)
|
| 235 |
+
with gr.Column(scale=1, visible=True):
|
| 236 |
+
mapping_dict = gr.Variable()
|
| 237 |
+
transcribed_text_df_finish = gr.Dataframe(
|
| 238 |
+
headers=["Transcribed text", "HTR prediction score"],
|
| 239 |
+
max_rows=15,
|
| 240 |
+
col_count=(2, "fixed"),
|
| 241 |
+
wrap=True,
|
| 242 |
+
interactive=False,
|
| 243 |
+
overflow_row_behaviour="paginate",
|
| 244 |
+
).style(height=600)
|
| 245 |
+
|
| 246 |
+
# custom track
|
| 247 |
+
region_segment_button.click(
|
| 248 |
+
custom_track.region_segment,
|
| 249 |
+
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
|
| 250 |
+
outputs=[output_region_image, regions_cropped_gallery, image_placeholder_lines, control_line_segment],
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
regions_cropped_gallery.select(
|
| 254 |
+
custom_track.get_select_index_image, regions_cropped_gallery, input_region_from_gallery
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
transcribed_text_df_finish.select(
|
| 258 |
+
fn=custom_track.get_select_index_df,
|
| 259 |
+
inputs=[transcribed_text_df_finish, mapping_dict],
|
| 260 |
+
outputs=gallery_inputs_lines_to_transcribe,
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
line_segment_button.click(
|
| 264 |
+
custom_track.line_segment,
|
| 265 |
+
inputs=[input_region_from_gallery, line_pred_score_threshold_slider, line_containments_threshold_slider],
|
| 266 |
+
outputs=[
|
| 267 |
+
output_line_from_region,
|
| 268 |
+
image_inputs_lines_to_transcribe,
|
| 269 |
+
inputs_lines_to_transcribe,
|
| 270 |
+
gallery_inputs_lines_to_transcribe,
|
| 271 |
+
temp_gallery_input,
|
| 272 |
+
# Hide
|
| 273 |
+
transcribe_button,
|
| 274 |
+
image_inputs_lines_to_transcribe,
|
| 275 |
+
image_placeholder_htr,
|
| 276 |
+
control_htr,
|
| 277 |
+
],
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
transcribe_button.click(
|
| 281 |
+
custom_track.transcribe_text,
|
| 282 |
+
inputs=[transcribed_text_df, inputs_lines_to_transcribe],
|
| 283 |
+
outputs=[
|
| 284 |
+
transcribed_text_df,
|
| 285 |
+
transcribed_text_df_finish,
|
| 286 |
+
mapping_dict,
|
| 287 |
+
txt_file_downlod,
|
| 288 |
+
control_results_transcribe,
|
| 289 |
+
image_placeholder_explore_results,
|
| 290 |
+
],
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
donwload_txt_button.click(
|
| 294 |
+
custom_track.download_df_to_txt,
|
| 295 |
+
inputs=transcribed_text_df,
|
| 296 |
+
outputs=[txt_file_downlod, txt_file_downlod],
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# def remove_temp_vis():
|
| 300 |
+
# if os.path.exists("./vis_data"):
|
| 301 |
+
# os.remove("././vis_data")
|
| 302 |
+
# return None
|
| 303 |
+
|
| 304 |
+
clear_button.click(
|
| 305 |
+
lambda: (
|
| 306 |
+
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
|
| 307 |
+
None,
|
| 308 |
+
None,
|
| 309 |
+
None,
|
| 310 |
+
gr.update(visible=False),
|
| 311 |
+
None,
|
| 312 |
+
None,
|
| 313 |
+
None,
|
| 314 |
+
gr.update(visible=False),
|
| 315 |
+
gr.update(visible=False),
|
| 316 |
+
gr.update(visible=True),
|
| 317 |
+
None,
|
| 318 |
+
gr.update(visible=False),
|
| 319 |
+
gr.update(visible=False),
|
| 320 |
+
gr.update(visible=True),
|
| 321 |
+
gr.update(visible=True),
|
| 322 |
+
),
|
| 323 |
+
inputs=[],
|
| 324 |
+
outputs=[
|
| 325 |
+
vis_data_folder_placeholder,
|
| 326 |
+
input_region_image,
|
| 327 |
+
regions_cropped_gallery,
|
| 328 |
+
input_region_from_gallery,
|
| 329 |
+
control_line_segment,
|
| 330 |
+
output_line_from_region,
|
| 331 |
+
inputs_lines_to_transcribe,
|
| 332 |
+
transcribed_text_df,
|
| 333 |
+
control_htr,
|
| 334 |
+
inputs_lines_to_transcribe,
|
| 335 |
+
image_placeholder_htr,
|
| 336 |
+
output_region_image,
|
| 337 |
+
image_inputs_lines_to_transcribe,
|
| 338 |
+
control_results_transcribe,
|
| 339 |
+
image_placeholder_explore_results,
|
| 340 |
+
image_placeholder_lines,
|
| 341 |
+
],
|
| 342 |
+
)
|