File size: 7,979 Bytes
f15d7db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# π HRHUB SETUP GUIDE
**Quick Start Guide for Deployment**
---
## π¦ What You Have
A complete, production-ready Streamlit application with:
- β
Professional code structure
- β
Mock data for MVP demo
- β
Interactive UI with network graphs
- β
Ready for GitHub + Streamlit Cloud deployment
---
## β‘ OPTION 1: Quick Local Test (2 minutes)
### For Mac/Linux:
```bash
cd hrhub
./run.sh
```
### For Windows:
```bash
cd hrhub
run.bat
```
**That's it!** Open `http://localhost:8501` in your browser.
---
## π OPTION 2: Deploy to Internet (10 minutes)
### Step 1: Install Git (if not already)
- **Windows**: Download from https://git-scm.com/
- **Mac**: Install Xcode Command Line Tools
- **Linux**: `sudo apt install git`
### Step 2: Create GitHub Repository
1. Go to https://github.com/new
2. Repository name: `hrhub`
3. Keep it PUBLIC
4. Don't initialize with README (we have one)
5. Click "Create repository"
### Step 3: Push Your Code
Open terminal/command prompt in the `hrhub` folder:
```bash
# Initialize git
git init
# Add all files
git add .
# Commit
git commit -m "Initial HRHUB MVP deployment"
# Connect to GitHub (replace YOUR-USERNAME)
git remote add origin https://github.com/YOUR-USERNAME/hrhub.git
# Push
git branch -M main
git push -u origin main
```
### Step 4: Deploy on Streamlit Cloud
1. Go to https://share.streamlit.io
2. Click "Sign in" β Sign in with GitHub
3. Click "New app"
4. Fill in:
- **Repository**: `YOUR-USERNAME/hrhub`
- **Branch**: `main`
- **Main file path**: `app.py`
5. Click "Deploy!"
**Wait 2-3 minutes** and your app will be live! π
You'll get a URL like: `https://hrhub-YOUR-USERNAME.streamlit.app`
---
## π― Testing Your Deployment
### What You Should See:
1. **Header**: "π’ HRHUB - HR Matching System"
2. **Demo Mode Banner**: Blue info box saying mock data is active
3. **Statistics**: 4 metric cards showing:
- Total Matches: 10
- Average Score: ~65%
- Excellent Matches: 4
- Best Match: ~70%
4. **Two Columns**:
- **Left**: Candidate profile with expandable sections
- **Right**: Company matches (table or cards)
5. **Network Graph**: Interactive visualization at the bottom
### Interaction Tests:
- β
Change slider in sidebar (matches 5-20)
- β
Change min score slider
- β
Switch view modes (Overview/Cards/Table)
- β
Expand candidate sections
- β
Hover over network graph nodes
- β
Drag nodes in the graph
---
## π§ Common Issues & Solutions
### Issue 1: "streamlit: command not found"
**Solution:**
```bash
pip install streamlit
```
### Issue 2: "Module not found"
**Solution:**
```bash
pip install -r requirements.txt
```
### Issue 3: Port 8501 already in use
**Solution:**
```bash
streamlit run app.py --server.port 8502
```
### Issue 4: Git push fails (authentication)
**Solution:**
1. Generate GitHub Personal Access Token:
- Settings β Developer settings β Personal access tokens β Generate new token
- Select "repo" scope
- Copy the token
2. When prompted for password, paste the token (not your GitHub password)
### Issue 5: Streamlit Cloud deployment fails
**Solution:**
- Check `requirements.txt` has all dependencies
- Ensure `app.py` is in root directory
- Check logs in Streamlit Cloud dashboard
- Make sure repository is PUBLIC
---
## π Next Steps (After Demo Works)
### Phase 1: Generate Real Embeddings
1. Run your original code with save functionality:
```python
import numpy as np
import pickle
# After generating embeddings...
np.save('candidate_embeddings.npy', candidate_embeddings)
np.save('company_embeddings.npy', company_embeddings)
with open('candidates_processed.pkl', 'wb') as f:
pickle.dump(candidates, f)
with open('companies_processed.pkl', 'wb') as f:
pickle.dump(companies_full, f)
```
2. Place files in `hrhub/data/` folder
### Phase 2: Create Real Data Loader
Create `data/data_loader.py`:
```python
import numpy as np
import pickle
from utils.matching import find_top_matches
def load_embeddings():
"""Load pre-computed embeddings."""
candidate_emb = np.load('data/candidate_embeddings.npy')
company_emb = np.load('data/company_embeddings.npy')
with open('data/candidates_processed.pkl', 'rb') as f:
candidates = pickle.load(f)
with open('data/companies_processed.pkl', 'rb') as f:
companies = pickle.load(f)
return candidate_emb, company_emb, candidates, companies
# Add functions matching mock_data.py structure
```
### Phase 3: Swap Data Sources
In `app.py`, change:
```python
# FROM:
from data.mock_data import get_candidate_data, get_company_matches
# TO:
from data.data_loader import get_candidate_data, get_company_matches
```
In `config.py`, change:
```python
DEMO_MODE = False # Turn off demo banner
```
**That's it!** The UI stays exactly the same.
---
## π For Your Teachers Demo
### What to Show:
1. **Start the app**: Show the clean UI loading
2. **Explain the candidate**: "This represents a real data scientist profile"
3. **Point out match scores**: "70% means strong alignment"
4. **Show the graph**: "Green = candidate, Red = companies, thickness = match strength"
5. **Demonstrate interaction**: Drag nodes, zoom, hover
6. **Highlight the concept**: "No hardcoded rules - pure semantic similarity"
### Key Points to Emphasize:
- β
**Scalable**: Works for 9.5K Γ 180K matching
- β
**Fast**: Real-time similarity computation
- β
**Bilateral**: Can work both directions
- β
**No manual rules**: NLP understands semantics
- β
**Production-ready**: Clean code, modular design
---
## π Project Structure Explained
```
hrhub/
βββ app.py # Main app - teachers see this running
βββ config.py # Easy to tweak settings
βββ requirements.txt # All dependencies listed
β
βββ data/
β βββ mock_data.py # Demo data (swap later)
β
βββ utils/
β βββ matching.py # Core algorithm - your innovation
β βββ visualization.py # Network graphs
β βββ display.py # UI components
β
βββ README.md # Documentation
```
**Why this structure?**
- **Modular**: Easy to swap mock β real data
- **Professional**: Industry-standard layout
- **Maintainable**: Clear separation of concerns
- **Scalable**: Ready to add features
---
## π― Timeline Suggestion
**Tuesday (Today):**
- β
Test locally: `./run.sh`
- β
Deploy to GitHub
- β
Deploy to Streamlit Cloud
- β
Share link with team
**Wednesday:**
- Run your original code
- Generate & save embeddings
- Test loading saved files
**Thursday:**
- Create `data_loader.py`
- Swap to real data
- Test end-to-end
- Fix any bugs
**Friday:**
- β
**DEMO READY**
- Polish presentation
- Prepare talking points
**Weekend:**
- Focus 100% on report
- App already deployed!
---
## π Need Help?
### Quick Checks:
1. **Is Python 3.8+ installed?** `python --version`
2. **Are dependencies installed?** `pip list | grep streamlit`
3. **Is the file structure correct?** `ls -la`
4. **Are you in the right directory?** `pwd`
### Still Stuck?
Check these in order:
1. Error message in terminal
2. Streamlit Cloud logs (if deployed)
3. GitHub Actions (if using)
4. This guide's "Common Issues" section
---
## β
Deployment Checklist
Before presenting to teachers:
- [ ] Local test works: `./run.sh`
- [ ] Pushed to GitHub
- [ ] Deployed on Streamlit Cloud
- [ ] Can access via public URL
- [ ] All sections display correctly
- [ ] Graph is interactive
- [ ] No error messages
- [ ] Screenshot/video of working app
- [ ] Link shared with team
- [ ] Backup plan (run locally if cloud fails)
---
## π You're Done!
You now have:
- β
Professional codebase
- β
Working demo
- β
Online deployment
- β
Easy path to production
**The hard part is done. Now focus on your report!** π
---
**Good luck with your presentation!** π
*Questions? Check README.md for more details.*
|