File size: 8,901 Bytes
4a2e3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "b2dd5b02",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"β
All imports successful!\n",
"π¦ Pandas: 2.1.4\n",
"π¦ Numpy: 1.26.3\n"
]
}
],
"source": [
"# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"# π HRHUB V2.1 - PRODUCTION NOTEBOOK\n",
"# Cell 1: Setup & Imports\n",
"# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"# Core\n",
"import pandas as pd\n",
"import numpy as np\n",
"from pathlib import Path\n",
"\n",
"# Embeddings\n",
"from sentence_transformers import SentenceTransformer\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"\n",
"# Viz\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"from pyvis.network import Network\n",
"\n",
"# Dimensionality reduction\n",
"from sklearn.manifold import TSNE\n",
"\n",
"# Utils\n",
"from tqdm import tqdm\n",
"import pickle\n",
"from typing import List, Dict, Tuple\n",
"import time\n",
"\n",
"# Config\n",
"plt.style.use('seaborn-v0_8-darkgrid')\n",
"sns.set_palette(\"husl\")\n",
"pd.set_option('display.max_columns', None)\n",
"pd.set_option('display.max_rows', 100)\n",
"\n",
"print(\"β
All imports successful!\")\n",
"print(f\"π¦ Pandas: {pd.__version__}\")\n",
"print(f\"π¦ Numpy: {np.__version__}\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b8696a11",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"β
Paths configured!\n",
"π Base path: data\n",
"π€ Model: sentence-transformers/all-MiniLM-L6-v2\n"
]
}
],
"source": [
"# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"# Cell 2: Paths & Configuration\n",
"# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"\n",
"# π’ VSCode local - path direto\n",
"BASE_PATH = Path(\"data\")\n",
"\n",
"# Input paths\n",
"DATA_PATHS = {\n",
" 'benefits': BASE_PATH / \"benefits.csv\",\n",
" 'companies': BASE_PATH / \"companies.csv\",\n",
" 'company_industries': BASE_PATH / \"company_industries.csv\",\n",
" 'company_specialties': BASE_PATH / \"company_specialties.csv\",\n",
" 'employee_counts': BASE_PATH / \"employee_counts.csv\",\n",
" 'industries': BASE_PATH / \"industries.csv\",\n",
" 'job_industries': BASE_PATH / \"job_industries.csv\",\n",
" 'job_skills': BASE_PATH / \"job_skills.csv\",\n",
" 'postings': BASE_PATH / \"postings.csv\",\n",
" 'resume_data': BASE_PATH / \"resume_data.csv\",\n",
" 'salaries': BASE_PATH / \"salaries.csv\",\n",
" 'skills': BASE_PATH / \"skills.csv\"\n",
"}\n",
"\n",
"# Output files (salvamos direto com npy/pkl)\n",
"OUTPUT_FILES = {\n",
" 'candidate_embeddings': 'candidate_embeddings.npy',\n",
" 'company_embeddings': 'company_embeddings.npy',\n",
" 'candidate_metadata': 'candidate_metadata.pkl',\n",
" 'company_metadata': 'company_metadata.pkl'\n",
"}\n",
"\n",
"# Model config\n",
"MODEL_NAME = \"sentence-transformers/all-MiniLM-L6-v2\"\n",
"EMBEDDING_DIM = 384\n",
"\n",
"print(\"β
Paths configured!\")\n",
"print(f\"π Base path: {BASE_PATH}\")\n",
"print(f\"π€ Model: {MODEL_NAME}\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "657220e4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"π₯ Loading data...\n",
"β benefits: ERROR - [Errno 2] No such file or directory: 'data/benefits.csv'\n",
"β companies: ERROR - [Errno 2] No such file or directory: 'data/companies.csv'\n",
"β company_industries: ERROR - [Errno 2] No such file or directory: 'data/company_industries.csv'\n",
"β company_specialties: ERROR - [Errno 2] No such file or directory: 'data/company_specialties.csv'\n",
"β employee_counts: ERROR - [Errno 2] No such file or directory: 'data/employee_counts.csv'\n",
"β industries: ERROR - [Errno 2] No such file or directory: 'data/industries.csv'\n",
"β job_industries: ERROR - [Errno 2] No such file or directory: 'data/job_industries.csv'\n",
"β job_skills: ERROR - [Errno 2] No such file or directory: 'data/job_skills.csv'\n",
"β postings: ERROR - [Errno 2] No such file or directory: 'data/postings.csv'\n",
"β resume_data: ERROR - [Errno 2] No such file or directory: 'data/resume_data.csv'\n",
"β salaries: ERROR - [Errno 2] No such file or directory: 'data/salaries.csv'\n",
"β skills: ERROR - [Errno 2] No such file or directory: 'data/skills.csv'\n",
"\n",
"β±οΈ Loaded in 0.00s\n",
"\n",
"======================================================================\n",
"π KEY DATASETS PREVIEW\n",
"======================================================================\n",
"\n",
"π CANDIDATES (resume_data):\n",
"\n",
"π’ COMPANIES:\n",
"\n",
"π JOB POSTINGS:\n",
"\n",
"β
Data loaded! Ready to inspect and clean.\n"
]
}
],
"source": [
"# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"# Cell 3: Load Raw Data\n",
"# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"\n",
"print(\"π₯ Loading data...\")\n",
"start_time = time.time()\n",
"\n",
"# Load all CSVs\n",
"data = {}\n",
"for name, path in DATA_PATHS.items():\n",
" try:\n",
" df = pd.read_csv(path)\n",
" data[name] = df\n",
" print(f\"β
{name}: {df.shape[0]:,} rows Γ {df.shape[1]} cols\")\n",
" except Exception as e:\n",
" print(f\"β {name}: ERROR - {e}\")\n",
" data[name] = None\n",
"\n",
"load_time = time.time() - start_time\n",
"print(f\"\\nβ±οΈ Loaded in {load_time:.2f}s\")\n",
"\n",
"# Quick peek at key datasets\n",
"print(\"\\n\" + \"=\"*70)\n",
"print(\"π KEY DATASETS PREVIEW\")\n",
"print(\"=\"*70)\n",
"\n",
"print(\"\\nπ CANDIDATES (resume_data):\")\n",
"if data['resume_data'] is not None:\n",
" print(f\"Shape: {data['resume_data'].shape}\")\n",
" print(f\"Columns: {list(data['resume_data'].columns)}\")\n",
" print(data['resume_data'].head(2))\n",
"\n",
"print(\"\\nπ’ COMPANIES:\")\n",
"if data['companies'] is not None:\n",
" print(f\"Shape: {data['companies'].shape}\")\n",
" print(f\"Columns: {list(data['companies'].columns)}\")\n",
" print(data['companies'].head(2))\n",
"\n",
"print(\"\\nπ JOB POSTINGS:\")\n",
"if data['postings'] is not None:\n",
" print(f\"Shape: {data['postings'].shape}\")\n",
" print(f\"Columns: {list(data['postings'].columns)}\")\n",
" print(data['postings'].head(2))\n",
"\n",
"print(\"\\nβ
Data loaded! Ready to inspect and clean.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52833afd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|