Roger Surf
commited on
Commit
Β·
100f669
1
Parent(s):
5e7da44
feat: integrate real data - app working with embeddings
Browse files- app.py +74 -37
- data/data_loader.py +43 -0
- utils/display.py +71 -121
- utils/display_old.py +295 -0
app.py
CHANGED
|
@@ -14,10 +14,9 @@ from pathlib import Path
|
|
| 14 |
sys.path.append(str(Path(__file__).parent))
|
| 15 |
|
| 16 |
from config import *
|
| 17 |
-
from data.
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
get_network_graph_data
|
| 21 |
)
|
| 22 |
from utils.display import (
|
| 23 |
display_candidate_profile,
|
|
@@ -124,14 +123,6 @@ def render_header():
|
|
| 124 |
|
| 125 |
st.markdown(f'<h1 class="main-title">{APP_TITLE}</h1>', unsafe_allow_html=True)
|
| 126 |
st.markdown(f'<p class="sub-title">{APP_SUBTITLE}</p>', unsafe_allow_html=True)
|
| 127 |
-
|
| 128 |
-
# Demo mode indicator
|
| 129 |
-
if DEMO_MODE:
|
| 130 |
-
st.info(
|
| 131 |
-
"π **Demo Mode Active** - Displaying hardcoded sample data. "
|
| 132 |
-
"This will be replaced with real matching when embeddings are loaded.",
|
| 133 |
-
icon="βΉοΈ"
|
| 134 |
-
)
|
| 135 |
|
| 136 |
|
| 137 |
def render_sidebar():
|
|
@@ -170,7 +161,7 @@ def render_sidebar():
|
|
| 170 |
st.markdown("### π View Mode")
|
| 171 |
view_mode = st.radio(
|
| 172 |
"Select view:",
|
| 173 |
-
["π Overview", "
|
| 174 |
help="Choose how to display company matches"
|
| 175 |
)
|
| 176 |
|
|
@@ -207,14 +198,48 @@ def render_sidebar():
|
|
| 207 |
return top_k, min_score, view_mode
|
| 208 |
|
| 209 |
|
| 210 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
"""Render interactive network visualization section."""
|
| 212 |
|
| 213 |
st.markdown('<div class="section-header">πΈοΈ Network Visualization</div>', unsafe_allow_html=True)
|
| 214 |
|
| 215 |
with st.spinner("Generating interactive network graph..."):
|
| 216 |
# Get graph data
|
| 217 |
-
graph_data = get_network_graph_data(candidate_id,
|
| 218 |
|
| 219 |
# Create HTML graph
|
| 220 |
html_content = create_network_graph(
|
|
@@ -252,7 +277,7 @@ def render_matches_section(matches, view_mode: str):
|
|
| 252 |
# Table view
|
| 253 |
display_match_table(matches)
|
| 254 |
|
| 255 |
-
elif view_mode == "
|
| 256 |
# Card view - detailed
|
| 257 |
for rank, (comp_id, score, comp_data) in enumerate(matches, 1):
|
| 258 |
display_company_card(comp_data, score, rank)
|
|
@@ -277,12 +302,35 @@ def main():
|
|
| 277 |
# Main content area
|
| 278 |
st.markdown("---")
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
# Load candidate data
|
| 281 |
candidate_id = DEMO_CANDIDATE_ID
|
| 282 |
-
candidate =
|
| 283 |
|
| 284 |
# Load company matches
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
# Filter by minimum score
|
| 288 |
matches = [(cid, score, cdata) for cid, score, cdata in matches if score >= min_score]
|
|
@@ -309,17 +357,10 @@ def main():
|
|
| 309 |
st.markdown("---")
|
| 310 |
|
| 311 |
# Network visualization (full width)
|
| 312 |
-
render_network_section(candidate_id,
|
| 313 |
|
| 314 |
st.markdown("---")
|
| 315 |
|
| 316 |
-
# Footer with instructions
|
| 317 |
-
st.success(
|
| 318 |
-
"β
**MVP Demo Ready!** This interface shows the core functionality. "
|
| 319 |
-
"Next step: Replace mock data with real embeddings for dynamic matching.",
|
| 320 |
-
icon="π"
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
# Technical info expander
|
| 324 |
with st.expander("π§ Technical Details", expanded=False):
|
| 325 |
st.markdown(f"""
|
|
@@ -328,20 +369,16 @@ def main():
|
|
| 328 |
- Similarity Metric: Cosine Similarity
|
| 329 |
- Top K Matches: {top_k}
|
| 330 |
- Minimum Score: {min_score:.0%}
|
| 331 |
-
-
|
| 332 |
-
|
| 333 |
-
**Data Sources:**
|
| 334 |
-
- Candidates: 9,544 profiles
|
| 335 |
-
- Companies: 180,000 entities
|
| 336 |
-
- Job Postings: 700 (bridge data)
|
| 337 |
|
| 338 |
**Algorithm:**
|
| 339 |
-
1.
|
| 340 |
-
2.
|
| 341 |
-
3.
|
| 342 |
-
4.
|
| 343 |
""")
|
| 344 |
|
| 345 |
|
| 346 |
if __name__ == "__main__":
|
| 347 |
-
main()
|
|
|
|
| 14 |
sys.path.append(str(Path(__file__).parent))
|
| 15 |
|
| 16 |
from config import *
|
| 17 |
+
from data.data_loader import (
|
| 18 |
+
load_embeddings,
|
| 19 |
+
find_top_matches
|
|
|
|
| 20 |
)
|
| 21 |
from utils.display import (
|
| 22 |
display_candidate_profile,
|
|
|
|
| 123 |
|
| 124 |
st.markdown(f'<h1 class="main-title">{APP_TITLE}</h1>', unsafe_allow_html=True)
|
| 125 |
st.markdown(f'<p class="sub-title">{APP_SUBTITLE}</p>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
|
| 128 |
def render_sidebar():
|
|
|
|
| 161 |
st.markdown("### π View Mode")
|
| 162 |
view_mode = st.radio(
|
| 163 |
"Select view:",
|
| 164 |
+
["π Overview", "π Detailed Cards", "π Table View"],
|
| 165 |
help="Choose how to display company matches"
|
| 166 |
)
|
| 167 |
|
|
|
|
| 198 |
return top_k, min_score, view_mode
|
| 199 |
|
| 200 |
|
| 201 |
+
def get_network_graph_data(candidate_id, matches):
|
| 202 |
+
"""Generate network graph data from matches."""
|
| 203 |
+
nodes = []
|
| 204 |
+
edges = []
|
| 205 |
+
|
| 206 |
+
# Add candidate node
|
| 207 |
+
nodes.append({
|
| 208 |
+
'id': f'C{candidate_id}',
|
| 209 |
+
'label': f'Candidate #{candidate_id}',
|
| 210 |
+
'color': '#4ade80',
|
| 211 |
+
'shape': 'dot',
|
| 212 |
+
'size': 30
|
| 213 |
+
})
|
| 214 |
+
|
| 215 |
+
# Add company nodes and edges
|
| 216 |
+
for comp_id, score, comp_data in matches:
|
| 217 |
+
nodes.append({
|
| 218 |
+
'id': f'COMP{comp_id}',
|
| 219 |
+
'label': comp_data.get('name', f'Company {comp_id}')[:30],
|
| 220 |
+
'color': '#ff6b6b',
|
| 221 |
+
'shape': 'box',
|
| 222 |
+
'size': 20
|
| 223 |
+
})
|
| 224 |
+
|
| 225 |
+
edges.append({
|
| 226 |
+
'from': f'C{candidate_id}',
|
| 227 |
+
'to': f'COMP{comp_id}',
|
| 228 |
+
'value': float(score) * 10,
|
| 229 |
+
'title': f'{score:.3f}'
|
| 230 |
+
})
|
| 231 |
+
|
| 232 |
+
return {'nodes': nodes, 'edges': edges}
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def render_network_section(candidate_id: int, matches):
|
| 236 |
"""Render interactive network visualization section."""
|
| 237 |
|
| 238 |
st.markdown('<div class="section-header">πΈοΈ Network Visualization</div>', unsafe_allow_html=True)
|
| 239 |
|
| 240 |
with st.spinner("Generating interactive network graph..."):
|
| 241 |
# Get graph data
|
| 242 |
+
graph_data = get_network_graph_data(candidate_id, matches)
|
| 243 |
|
| 244 |
# Create HTML graph
|
| 245 |
html_content = create_network_graph(
|
|
|
|
| 277 |
# Table view
|
| 278 |
display_match_table(matches)
|
| 279 |
|
| 280 |
+
elif view_mode == "π Detailed Cards":
|
| 281 |
# Card view - detailed
|
| 282 |
for rank, (comp_id, score, comp_data) in enumerate(matches, 1):
|
| 283 |
display_company_card(comp_data, score, rank)
|
|
|
|
| 302 |
# Main content area
|
| 303 |
st.markdown("---")
|
| 304 |
|
| 305 |
+
# Load embeddings (cache in session state)
|
| 306 |
+
if 'embeddings_loaded' not in st.session_state:
|
| 307 |
+
with st.spinner("π Loading embeddings and data..."):
|
| 308 |
+
cand_emb, comp_emb, cand_df, comp_df = load_embeddings()
|
| 309 |
+
st.session_state.embeddings_loaded = True
|
| 310 |
+
st.session_state.candidate_embeddings = cand_emb
|
| 311 |
+
st.session_state.company_embeddings = comp_emb
|
| 312 |
+
st.session_state.candidates_df = cand_df
|
| 313 |
+
st.session_state.companies_df = comp_df
|
| 314 |
+
st.success("β
Data loaded successfully!")
|
| 315 |
+
|
| 316 |
# Load candidate data
|
| 317 |
candidate_id = DEMO_CANDIDATE_ID
|
| 318 |
+
candidate = st.session_state.candidates_df.iloc[candidate_id]
|
| 319 |
|
| 320 |
# Load company matches
|
| 321 |
+
matches_list = find_top_matches(
|
| 322 |
+
candidate_id,
|
| 323 |
+
st.session_state.candidate_embeddings,
|
| 324 |
+
st.session_state.company_embeddings,
|
| 325 |
+
st.session_state.companies_df,
|
| 326 |
+
top_k
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
# Format matches for display
|
| 330 |
+
matches = [
|
| 331 |
+
(m['company_id'], m['score'], st.session_state.companies_df.iloc[m['company_id']])
|
| 332 |
+
for m in matches_list
|
| 333 |
+
]
|
| 334 |
|
| 335 |
# Filter by minimum score
|
| 336 |
matches = [(cid, score, cdata) for cid, score, cdata in matches if score >= min_score]
|
|
|
|
| 357 |
st.markdown("---")
|
| 358 |
|
| 359 |
# Network visualization (full width)
|
| 360 |
+
render_network_section(candidate_id, matches)
|
| 361 |
|
| 362 |
st.markdown("---")
|
| 363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
# Technical info expander
|
| 365 |
with st.expander("π§ Technical Details", expanded=False):
|
| 366 |
st.markdown(f"""
|
|
|
|
| 369 |
- Similarity Metric: Cosine Similarity
|
| 370 |
- Top K Matches: {top_k}
|
| 371 |
- Minimum Score: {min_score:.0%}
|
| 372 |
+
- Candidates Loaded: {len(st.session_state.candidates_df):,}
|
| 373 |
+
- Companies Loaded: {len(st.session_state.companies_df):,}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
**Algorithm:**
|
| 376 |
+
1. Load pre-computed embeddings (.npy files)
|
| 377 |
+
2. Calculate cosine similarity
|
| 378 |
+
3. Rank companies by similarity score
|
| 379 |
+
4. Return top-K matches
|
| 380 |
""")
|
| 381 |
|
| 382 |
|
| 383 |
if __name__ == "__main__":
|
| 384 |
+
main()
|
data/data_loader.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pickle
|
| 3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
|
| 5 |
+
def load_embeddings():
|
| 6 |
+
"""Load pre-computed embeddings and metadata."""
|
| 7 |
+
|
| 8 |
+
# Load embeddings
|
| 9 |
+
candidate_embeddings = np.load('data/processed/candidate_embeddings.npy')
|
| 10 |
+
company_embeddings = np.load('data/processed/company_embeddings.npy')
|
| 11 |
+
|
| 12 |
+
# Load metadata
|
| 13 |
+
with open('data/processed/candidates_processed.pkl', 'rb') as f:
|
| 14 |
+
candidates_df = pickle.load(f)
|
| 15 |
+
|
| 16 |
+
with open('data/processed/companies_processed.pkl', 'rb') as f:
|
| 17 |
+
companies_df = pickle.load(f)
|
| 18 |
+
|
| 19 |
+
return candidate_embeddings, company_embeddings, candidates_df, companies_df
|
| 20 |
+
|
| 21 |
+
def find_top_matches(candidate_idx, candidate_embeddings, company_embeddings, companies_df, top_k=10):
|
| 22 |
+
"""Find top K company matches for a candidate."""
|
| 23 |
+
|
| 24 |
+
# Get candidate embedding
|
| 25 |
+
candidate_vec = candidate_embeddings[candidate_idx].reshape(1, -1)
|
| 26 |
+
|
| 27 |
+
# Calculate similarities
|
| 28 |
+
similarities = cosine_similarity(candidate_vec, company_embeddings)[0]
|
| 29 |
+
|
| 30 |
+
# Get top K indices
|
| 31 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
| 32 |
+
|
| 33 |
+
# Build results
|
| 34 |
+
matches = []
|
| 35 |
+
for idx in top_indices:
|
| 36 |
+
matches.append({
|
| 37 |
+
'company_id': idx,
|
| 38 |
+
'company_name': companies_df.iloc[idx].get('name', f'Company {idx}'),
|
| 39 |
+
'job_title': companies_df.iloc[idx].get('title', 'N/A'),
|
| 40 |
+
'score': float(similarities[idx])
|
| 41 |
+
})
|
| 42 |
+
|
| 43 |
+
return matches
|
utils/display.py
CHANGED
|
@@ -5,107 +5,94 @@ Contains formatted display components for candidates and companies.
|
|
| 5 |
|
| 6 |
import streamlit as st
|
| 7 |
import pandas as pd
|
|
|
|
| 8 |
from typing import Dict, Any, List, Tuple
|
| 9 |
|
| 10 |
|
| 11 |
-
def display_candidate_profile(candidate
|
| 12 |
"""
|
| 13 |
Display comprehensive candidate profile in Streamlit.
|
| 14 |
|
| 15 |
Args:
|
| 16 |
-
candidate:
|
| 17 |
"""
|
| 18 |
|
| 19 |
st.markdown("### π€ Candidate Profile")
|
| 20 |
st.markdown("---")
|
| 21 |
|
| 22 |
-
# Basic Info
|
| 23 |
-
col1, col2 = st.columns([2, 1])
|
| 24 |
-
|
| 25 |
-
with col1:
|
| 26 |
-
st.markdown(f"**Name:** {candidate.get('name', 'N/A')}")
|
| 27 |
-
st.markdown(f"**Desired Position:** {candidate.get('job_position_name', 'N/A')}")
|
| 28 |
-
|
| 29 |
-
with col2:
|
| 30 |
-
st.metric("Match Score", f"{candidate.get('matched_score', 0):.2%}")
|
| 31 |
-
|
| 32 |
# Career Objective
|
| 33 |
with st.expander("π― Career Objective", expanded=True):
|
| 34 |
st.write(candidate.get('career_objective', 'Not provided'))
|
| 35 |
|
| 36 |
# Skills
|
| 37 |
with st.expander("π» Skills & Expertise", expanded=True):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Education
|
| 47 |
with st.expander("π Education"):
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
st.write("No education information provided")
|
| 61 |
|
| 62 |
# Work Experience
|
| 63 |
with st.expander("πΌ Work Experience"):
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
'End': candidate.get('end_dates', [])
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
if any(exp_data.values()):
|
| 73 |
-
df_exp = pd.DataFrame(exp_data)
|
| 74 |
-
st.dataframe(df_exp, use_container_width=True, hide_index=True)
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
st.write("No work experience listed")
|
| 83 |
-
|
| 84 |
-
# Languages
|
| 85 |
-
with st.expander("π Languages"):
|
| 86 |
-
languages = candidate.get('languages', [])
|
| 87 |
-
proficiency = candidate.get('proficiency_levels', [])
|
| 88 |
-
|
| 89 |
-
if languages:
|
| 90 |
-
for lang, prof in zip(languages, proficiency):
|
| 91 |
-
st.write(f"β’ **{lang}** - {prof}")
|
| 92 |
-
else:
|
| 93 |
-
st.write("No languages listed")
|
| 94 |
-
|
| 95 |
-
# Certifications
|
| 96 |
-
with st.expander("π
Certifications"):
|
| 97 |
-
providers = candidate.get('certification_providers', [])
|
| 98 |
-
skills = candidate.get('certification_skills', [])
|
| 99 |
-
|
| 100 |
-
if providers:
|
| 101 |
-
for provider, skill in zip(providers, skills):
|
| 102 |
-
st.write(f"β’ **{skill}** by {provider}")
|
| 103 |
-
else:
|
| 104 |
-
st.write("No certifications listed")
|
| 105 |
|
| 106 |
|
| 107 |
def display_company_card(
|
| 108 |
-
company_data
|
| 109 |
similarity_score: float,
|
| 110 |
rank: int
|
| 111 |
):
|
|
@@ -113,7 +100,7 @@ def display_company_card(
|
|
| 113 |
Display company information as a card.
|
| 114 |
|
| 115 |
Args:
|
| 116 |
-
company_data:
|
| 117 |
similarity_score: Match score
|
| 118 |
rank: Ranking position
|
| 119 |
"""
|
|
@@ -152,44 +139,19 @@ def display_company_card(
|
|
| 152 |
)
|
| 153 |
|
| 154 |
# Company details
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
with col1:
|
| 158 |
-
st.markdown(f"**π Location**")
|
| 159 |
-
location = f"{company_data.get('city', '')}, {company_data.get('state', '')}, {company_data.get('country', '')}"
|
| 160 |
-
st.write(location)
|
| 161 |
-
|
| 162 |
-
with col2:
|
| 163 |
-
st.markdown(f"**π₯ Size**")
|
| 164 |
-
st.write(company_data.get('employee_count', 'N/A'))
|
| 165 |
-
|
| 166 |
-
with col3:
|
| 167 |
-
st.markdown(f"**π Industry**")
|
| 168 |
-
industries = company_data.get('industries_list', 'N/A')
|
| 169 |
-
st.write(industries.split(',')[0] if ',' in str(industries) else industries)
|
| 170 |
|
| 171 |
# Description
|
| 172 |
-
description = company_data.get('description', 'No description available')
|
|
|
|
|
|
|
| 173 |
st.markdown(f"**About:** {description}")
|
| 174 |
|
| 175 |
-
# Required skills
|
| 176 |
-
required_skills = company_data.get('required_skills', '')
|
| 177 |
-
if required_skills:
|
| 178 |
-
st.markdown("**π§ Required Skills:**")
|
| 179 |
-
skills_list = [s.strip() for s in str(required_skills).split('|')[:8]]
|
| 180 |
-
skills_html = " ".join([f'<span style="background-color: #CC0000; color: white; padding: 5px 10px; border-radius: 15px; margin: 3px; display: inline-block; font-size: 12px;">{skill}</span>' for skill in skills_list])
|
| 181 |
-
st.markdown(skills_html, unsafe_allow_html=True)
|
| 182 |
-
|
| 183 |
-
# Job postings
|
| 184 |
-
job_titles = company_data.get('posted_job_titles', '')
|
| 185 |
-
if job_titles:
|
| 186 |
-
st.markdown(f"**πΌ Open Positions:** {job_titles}")
|
| 187 |
-
|
| 188 |
st.markdown("---")
|
| 189 |
|
| 190 |
|
| 191 |
def display_match_table(
|
| 192 |
-
matches: List[Tuple[int, float,
|
| 193 |
show_top_n: int = 10
|
| 194 |
):
|
| 195 |
"""
|
|
@@ -207,21 +169,11 @@ def display_match_table(
|
|
| 207 |
table_data = []
|
| 208 |
|
| 209 |
for rank, (comp_id, score, comp_data) in enumerate(matches[:show_top_n], 1):
|
| 210 |
-
# Get key skills (first 3)
|
| 211 |
-
skills = comp_data.get('required_skills', 'N/A')
|
| 212 |
-
if skills and skills != 'N/A':
|
| 213 |
-
skills_list = [s.strip() for s in str(skills).split('|')[:3]]
|
| 214 |
-
skills_display = ', '.join(skills_list)
|
| 215 |
-
else:
|
| 216 |
-
skills_display = 'N/A'
|
| 217 |
-
|
| 218 |
table_data.append({
|
| 219 |
'Rank': f"#{rank}",
|
| 220 |
-
'Company':
|
| 221 |
'Score': f"{score:.1%}",
|
| 222 |
-
'
|
| 223 |
-
'Top Skills': skills_display,
|
| 224 |
-
'Employees': comp_data.get('employee_count', 'N/A')
|
| 225 |
})
|
| 226 |
|
| 227 |
# Display as dataframe
|
|
@@ -235,10 +187,8 @@ def display_match_table(
|
|
| 235 |
column_config={
|
| 236 |
"Rank": st.column_config.TextColumn(width="small"),
|
| 237 |
"Score": st.column_config.TextColumn(width="small"),
|
| 238 |
-
"Company": st.column_config.TextColumn(width="medium"),
|
| 239 |
-
"
|
| 240 |
-
"Top Skills": st.column_config.TextColumn(width="large"),
|
| 241 |
-
"Employees": st.column_config.TextColumn(width="small")
|
| 242 |
}
|
| 243 |
)
|
| 244 |
|
|
@@ -246,8 +196,8 @@ def display_match_table(
|
|
| 246 |
|
| 247 |
|
| 248 |
def display_stats_overview(
|
| 249 |
-
candidate_data
|
| 250 |
-
matches: List[Tuple[int, float,
|
| 251 |
):
|
| 252 |
"""
|
| 253 |
Display overview statistics about the matching results.
|
|
@@ -292,4 +242,4 @@ def display_stats_overview(
|
|
| 292 |
help="Highest similarity score"
|
| 293 |
)
|
| 294 |
|
| 295 |
-
st.markdown("---")
|
|
|
|
| 5 |
|
| 6 |
import streamlit as st
|
| 7 |
import pandas as pd
|
| 8 |
+
import ast
|
| 9 |
from typing import Dict, Any, List, Tuple
|
| 10 |
|
| 11 |
|
| 12 |
+
def display_candidate_profile(candidate):
|
| 13 |
"""
|
| 14 |
Display comprehensive candidate profile in Streamlit.
|
| 15 |
|
| 16 |
Args:
|
| 17 |
+
candidate: Pandas Series with candidate data
|
| 18 |
"""
|
| 19 |
|
| 20 |
st.markdown("### π€ Candidate Profile")
|
| 21 |
st.markdown("---")
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Career Objective
|
| 24 |
with st.expander("π― Career Objective", expanded=True):
|
| 25 |
st.write(candidate.get('career_objective', 'Not provided'))
|
| 26 |
|
| 27 |
# Skills
|
| 28 |
with st.expander("π» Skills & Expertise", expanded=True):
|
| 29 |
+
try:
|
| 30 |
+
skills = ast.literal_eval(candidate.get('skills', '[]'))
|
| 31 |
+
if skills:
|
| 32 |
+
# Display as tags
|
| 33 |
+
skills_html = " ".join([f'<span style="background-color: #0066CC; color: white; padding: 5px 10px; border-radius: 15px; margin: 3px; display: inline-block;">{skill}</span>' for skill in skills[:15]])
|
| 34 |
+
st.markdown(skills_html, unsafe_allow_html=True)
|
| 35 |
+
else:
|
| 36 |
+
st.write("No skills listed")
|
| 37 |
+
except:
|
| 38 |
+
st.write(candidate.get('skills', 'No skills listed'))
|
| 39 |
|
| 40 |
# Education
|
| 41 |
with st.expander("π Education"):
|
| 42 |
+
try:
|
| 43 |
+
institutions = ast.literal_eval(candidate.get('educational_institution_name', '[]'))
|
| 44 |
+
degrees = ast.literal_eval(candidate.get('degree_names', '[]'))
|
| 45 |
+
majors = ast.literal_eval(candidate.get('major_field_of_studies', '[]'))
|
| 46 |
+
years = ast.literal_eval(candidate.get('passing_years', '[]'))
|
| 47 |
+
|
| 48 |
+
if institutions and any(institutions):
|
| 49 |
+
for i in range(len(institutions)):
|
| 50 |
+
degree = degrees[i] if i < len(degrees) else 'N/A'
|
| 51 |
+
major = majors[i] if i < len(majors) else 'N/A'
|
| 52 |
+
year = years[i] if i < len(years) else 'N/A'
|
| 53 |
+
|
| 54 |
+
st.write(f"**{degree}** in {major}")
|
| 55 |
+
st.write(f"π {institutions[i]}")
|
| 56 |
+
st.write(f"π
{year}")
|
| 57 |
+
if i < len(institutions) - 1:
|
| 58 |
+
st.write("---")
|
| 59 |
+
else:
|
| 60 |
+
st.write("No education information provided")
|
| 61 |
+
except:
|
| 62 |
st.write("No education information provided")
|
| 63 |
|
| 64 |
# Work Experience
|
| 65 |
with st.expander("πΌ Work Experience"):
|
| 66 |
+
try:
|
| 67 |
+
companies = ast.literal_eval(candidate.get('professional_company_names', '[]'))
|
| 68 |
+
positions = ast.literal_eval(candidate.get('positions', '[]'))
|
| 69 |
+
starts = ast.literal_eval(candidate.get('start_dates', '[]'))
|
| 70 |
+
ends = ast.literal_eval(candidate.get('end_dates', '[]'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
if companies and any(companies):
|
| 73 |
+
for i in range(len(companies)):
|
| 74 |
+
position = positions[i] if i < len(positions) else 'N/A'
|
| 75 |
+
start = starts[i] if i < len(starts) else 'N/A'
|
| 76 |
+
end = ends[i] if i < len(ends) else 'N/A'
|
| 77 |
+
|
| 78 |
+
st.write(f"**{position}** at {companies[i]}")
|
| 79 |
+
st.write(f"π
{start} - {end}")
|
| 80 |
+
if i < len(companies) - 1:
|
| 81 |
+
st.write("---")
|
| 82 |
+
|
| 83 |
+
# Show responsibilities
|
| 84 |
+
responsibilities = candidate.get('responsibilities', '')
|
| 85 |
+
if responsibilities:
|
| 86 |
+
st.markdown("**Key Responsibilities:**")
|
| 87 |
+
st.text(responsibilities)
|
| 88 |
+
else:
|
| 89 |
+
st.write("No work experience listed")
|
| 90 |
+
except:
|
| 91 |
st.write("No work experience listed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def display_company_card(
|
| 95 |
+
company_data,
|
| 96 |
similarity_score: float,
|
| 97 |
rank: int
|
| 98 |
):
|
|
|
|
| 100 |
Display company information as a card.
|
| 101 |
|
| 102 |
Args:
|
| 103 |
+
company_data: Pandas Series with company data
|
| 104 |
similarity_score: Match score
|
| 105 |
rank: Ranking position
|
| 106 |
"""
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
# Company details
|
| 142 |
+
st.markdown(f"**Company ID:** {company_data.name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
# Description
|
| 145 |
+
description = company_data.get('description', company_data.get('text', 'No description available'))
|
| 146 |
+
if len(str(description)) > 200:
|
| 147 |
+
description = str(description)[:200] + "..."
|
| 148 |
st.markdown(f"**About:** {description}")
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
st.markdown("---")
|
| 151 |
|
| 152 |
|
| 153 |
def display_match_table(
|
| 154 |
+
matches: List[Tuple[int, float, Any]],
|
| 155 |
show_top_n: int = 10
|
| 156 |
):
|
| 157 |
"""
|
|
|
|
| 169 |
table_data = []
|
| 170 |
|
| 171 |
for rank, (comp_id, score, comp_data) in enumerate(matches[:show_top_n], 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
table_data.append({
|
| 173 |
'Rank': f"#{rank}",
|
| 174 |
+
'Company ID': comp_id,
|
| 175 |
'Score': f"{score:.1%}",
|
| 176 |
+
'Match Quality': 'π₯ Excellent' if score >= 0.7 else 'β¨ Very Good' if score >= 0.6 else 'π Good' if score >= 0.5 else 'β Fair'
|
|
|
|
|
|
|
| 177 |
})
|
| 178 |
|
| 179 |
# Display as dataframe
|
|
|
|
| 187 |
column_config={
|
| 188 |
"Rank": st.column_config.TextColumn(width="small"),
|
| 189 |
"Score": st.column_config.TextColumn(width="small"),
|
| 190 |
+
"Company ID": st.column_config.TextColumn(width="medium"),
|
| 191 |
+
"Match Quality": st.column_config.TextColumn(width="medium")
|
|
|
|
|
|
|
| 192 |
}
|
| 193 |
)
|
| 194 |
|
|
|
|
| 196 |
|
| 197 |
|
| 198 |
def display_stats_overview(
|
| 199 |
+
candidate_data,
|
| 200 |
+
matches: List[Tuple[int, float, Any]]
|
| 201 |
):
|
| 202 |
"""
|
| 203 |
Display overview statistics about the matching results.
|
|
|
|
| 242 |
help="Highest similarity score"
|
| 243 |
)
|
| 244 |
|
| 245 |
+
st.markdown("---")
|
utils/display_old.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Display utilities for HRHUB Streamlit UI.
|
| 3 |
+
Contains formatted display components for candidates and companies.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from typing import Dict, Any, List, Tuple
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def display_candidate_profile(candidate: Dict[str, Any]):
|
| 12 |
+
"""
|
| 13 |
+
Display comprehensive candidate profile in Streamlit.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
candidate: Dictionary with candidate data
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
st.markdown("### π€ Candidate Profile")
|
| 20 |
+
st.markdown("---")
|
| 21 |
+
|
| 22 |
+
# Basic Info
|
| 23 |
+
col1, col2 = st.columns([2, 1])
|
| 24 |
+
|
| 25 |
+
with col1:
|
| 26 |
+
st.markdown(f"**Name:** {candidate.get('name', 'N/A')}")
|
| 27 |
+
st.markdown(f"**Desired Position:** {candidate.get('job_position_name', 'N/A')}")
|
| 28 |
+
|
| 29 |
+
with col2:
|
| 30 |
+
st.metric("Match Score", f"{candidate.get('matched_score', 0):.2%}")
|
| 31 |
+
|
| 32 |
+
# Career Objective
|
| 33 |
+
with st.expander("π― Career Objective", expanded=True):
|
| 34 |
+
st.write(candidate.get('career_objective', 'Not provided'))
|
| 35 |
+
|
| 36 |
+
# Skills
|
| 37 |
+
with st.expander("π» Skills & Expertise", expanded=True):
|
| 38 |
+
skills = candidate.get('skills', [])
|
| 39 |
+
if skills:
|
| 40 |
+
# Display as tags
|
| 41 |
+
skills_html = " ".join([f'<span style="background-color: #0066CC; color: white; padding: 5px 10px; border-radius: 15px; margin: 3px; display: inline-block;">{skill}</span>' for skill in skills[:15]])
|
| 42 |
+
st.markdown(skills_html, unsafe_allow_html=True)
|
| 43 |
+
else:
|
| 44 |
+
st.write("No skills listed")
|
| 45 |
+
|
| 46 |
+
# Education
|
| 47 |
+
with st.expander("π Education"):
|
| 48 |
+
edu_data = {
|
| 49 |
+
'Institution': candidate.get('educational_institution_name', []),
|
| 50 |
+
'Degree': candidate.get('degree_names', []),
|
| 51 |
+
'Major': candidate.get('major_field_of_studies', []),
|
| 52 |
+
'Year': candidate.get('passing_years', []),
|
| 53 |
+
'GPA': candidate.get('educational_results', [])
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
if any(edu_data.values()):
|
| 57 |
+
df_edu = pd.DataFrame(edu_data)
|
| 58 |
+
st.dataframe(df_edu, use_container_width=True, hide_index=True)
|
| 59 |
+
else:
|
| 60 |
+
st.write("No education information provided")
|
| 61 |
+
|
| 62 |
+
# Work Experience
|
| 63 |
+
with st.expander("πΌ Work Experience"):
|
| 64 |
+
exp_data = {
|
| 65 |
+
'Company': candidate.get('professional_company_names', []),
|
| 66 |
+
'Position': candidate.get('positions', []),
|
| 67 |
+
'Location': candidate.get('locations', []),
|
| 68 |
+
'Start': candidate.get('start_dates', []),
|
| 69 |
+
'End': candidate.get('end_dates', [])
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
if any(exp_data.values()):
|
| 73 |
+
df_exp = pd.DataFrame(exp_data)
|
| 74 |
+
st.dataframe(df_exp, use_container_width=True, hide_index=True)
|
| 75 |
+
|
| 76 |
+
# Show responsibilities
|
| 77 |
+
responsibilities = candidate.get('responsibilities', '')
|
| 78 |
+
if responsibilities:
|
| 79 |
+
st.markdown("**Key Responsibilities:**")
|
| 80 |
+
st.text(responsibilities)
|
| 81 |
+
else:
|
| 82 |
+
st.write("No work experience listed")
|
| 83 |
+
|
| 84 |
+
# Languages
|
| 85 |
+
with st.expander("π Languages"):
|
| 86 |
+
languages = candidate.get('languages', [])
|
| 87 |
+
proficiency = candidate.get('proficiency_levels', [])
|
| 88 |
+
|
| 89 |
+
if languages:
|
| 90 |
+
for lang, prof in zip(languages, proficiency):
|
| 91 |
+
st.write(f"β’ **{lang}** - {prof}")
|
| 92 |
+
else:
|
| 93 |
+
st.write("No languages listed")
|
| 94 |
+
|
| 95 |
+
# Certifications
|
| 96 |
+
with st.expander("π
Certifications"):
|
| 97 |
+
providers = candidate.get('certification_providers', [])
|
| 98 |
+
skills = candidate.get('certification_skills', [])
|
| 99 |
+
|
| 100 |
+
if providers:
|
| 101 |
+
for provider, skill in zip(providers, skills):
|
| 102 |
+
st.write(f"β’ **{skill}** by {provider}")
|
| 103 |
+
else:
|
| 104 |
+
st.write("No certifications listed")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def display_company_card(
|
| 108 |
+
company_data: Dict[str, Any],
|
| 109 |
+
similarity_score: float,
|
| 110 |
+
rank: int
|
| 111 |
+
):
|
| 112 |
+
"""
|
| 113 |
+
Display company information as a card.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
company_data: Dictionary with company data
|
| 117 |
+
similarity_score: Match score
|
| 118 |
+
rank: Ranking position
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
with st.container():
|
| 122 |
+
# Header with rank and score
|
| 123 |
+
col1, col2, col3 = st.columns([1, 4, 2])
|
| 124 |
+
|
| 125 |
+
with col1:
|
| 126 |
+
st.markdown(f"### #{rank}")
|
| 127 |
+
|
| 128 |
+
with col2:
|
| 129 |
+
st.markdown(f"### π’ {company_data.get('name', 'Unknown Company')}")
|
| 130 |
+
|
| 131 |
+
with col3:
|
| 132 |
+
# Color-coded score
|
| 133 |
+
if similarity_score >= 0.7:
|
| 134 |
+
color = "#00FF00" # Green
|
| 135 |
+
label = "Excellent"
|
| 136 |
+
elif similarity_score >= 0.6:
|
| 137 |
+
color = "#FFD700" # Gold
|
| 138 |
+
label = "Very Good"
|
| 139 |
+
elif similarity_score >= 0.5:
|
| 140 |
+
color = "#FFA500" # Orange
|
| 141 |
+
label = "Good"
|
| 142 |
+
else:
|
| 143 |
+
color = "#FF6347" # Red
|
| 144 |
+
label = "Fair"
|
| 145 |
+
|
| 146 |
+
st.markdown(
|
| 147 |
+
f'<div style="text-align: center; padding: 10px; background-color: {color}20; border: 2px solid {color}; border-radius: 10px;">'
|
| 148 |
+
f'<span style="font-size: 24px; font-weight: bold; color: {color};">{similarity_score:.1%}</span><br>'
|
| 149 |
+
f'<span style="font-size: 12px;">{label} Match</span>'
|
| 150 |
+
f'</div>',
|
| 151 |
+
unsafe_allow_html=True
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Company details
|
| 155 |
+
col1, col2, col3 = st.columns(3)
|
| 156 |
+
|
| 157 |
+
with col1:
|
| 158 |
+
st.markdown(f"**π Location**")
|
| 159 |
+
location = f"{company_data.get('city', '')}, {company_data.get('state', '')}, {company_data.get('country', '')}"
|
| 160 |
+
st.write(location)
|
| 161 |
+
|
| 162 |
+
with col2:
|
| 163 |
+
st.markdown(f"**π₯ Size**")
|
| 164 |
+
st.write(company_data.get('employee_count', 'N/A'))
|
| 165 |
+
|
| 166 |
+
with col3:
|
| 167 |
+
st.markdown(f"**π Industry**")
|
| 168 |
+
industries = company_data.get('industries_list', 'N/A')
|
| 169 |
+
st.write(industries.split(',')[0] if ',' in str(industries) else industries)
|
| 170 |
+
|
| 171 |
+
# Description
|
| 172 |
+
description = company_data.get('description', 'No description available')
|
| 173 |
+
st.markdown(f"**About:** {description}")
|
| 174 |
+
|
| 175 |
+
# Required skills
|
| 176 |
+
required_skills = company_data.get('required_skills', '')
|
| 177 |
+
if required_skills:
|
| 178 |
+
st.markdown("**π§ Required Skills:**")
|
| 179 |
+
skills_list = [s.strip() for s in str(required_skills).split('|')[:8]]
|
| 180 |
+
skills_html = " ".join([f'<span style="background-color: #CC0000; color: white; padding: 5px 10px; border-radius: 15px; margin: 3px; display: inline-block; font-size: 12px;">{skill}</span>' for skill in skills_list])
|
| 181 |
+
st.markdown(skills_html, unsafe_allow_html=True)
|
| 182 |
+
|
| 183 |
+
# Job postings
|
| 184 |
+
job_titles = company_data.get('posted_job_titles', '')
|
| 185 |
+
if job_titles:
|
| 186 |
+
st.markdown(f"**πΌ Open Positions:** {job_titles}")
|
| 187 |
+
|
| 188 |
+
st.markdown("---")
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def display_match_table(
|
| 192 |
+
matches: List[Tuple[int, float, Dict[str, Any]]],
|
| 193 |
+
show_top_n: int = 10
|
| 194 |
+
):
|
| 195 |
+
"""
|
| 196 |
+
Display match results as a formatted table.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
matches: List of (company_id, score, company_data) tuples
|
| 200 |
+
show_top_n: Number of matches to display
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
st.markdown(f"### π― Top {show_top_n} Company Matches")
|
| 204 |
+
st.markdown("---")
|
| 205 |
+
|
| 206 |
+
# Prepare data for table
|
| 207 |
+
table_data = []
|
| 208 |
+
|
| 209 |
+
for rank, (comp_id, score, comp_data) in enumerate(matches[:show_top_n], 1):
|
| 210 |
+
# Get key skills (first 3)
|
| 211 |
+
skills = comp_data.get('required_skills', 'N/A')
|
| 212 |
+
if skills and skills != 'N/A':
|
| 213 |
+
skills_list = [s.strip() for s in str(skills).split('|')[:3]]
|
| 214 |
+
skills_display = ', '.join(skills_list)
|
| 215 |
+
else:
|
| 216 |
+
skills_display = 'N/A'
|
| 217 |
+
|
| 218 |
+
table_data.append({
|
| 219 |
+
'Rank': f"#{rank}",
|
| 220 |
+
'Company': comp_data.get('name', 'N/A'),
|
| 221 |
+
'Score': f"{score:.1%}",
|
| 222 |
+
'Location': f"{comp_data.get('city', 'N/A')}, {comp_data.get('state', 'N/A')}",
|
| 223 |
+
'Top Skills': skills_display,
|
| 224 |
+
'Employees': comp_data.get('employee_count', 'N/A')
|
| 225 |
+
})
|
| 226 |
+
|
| 227 |
+
# Display as dataframe
|
| 228 |
+
df = pd.DataFrame(table_data)
|
| 229 |
+
|
| 230 |
+
# Style the dataframe
|
| 231 |
+
st.dataframe(
|
| 232 |
+
df,
|
| 233 |
+
width='stretch',
|
| 234 |
+
hide_index=True,
|
| 235 |
+
column_config={
|
| 236 |
+
"Rank": st.column_config.TextColumn(width="small"),
|
| 237 |
+
"Score": st.column_config.TextColumn(width="small"),
|
| 238 |
+
"Company": st.column_config.TextColumn(width="medium"),
|
| 239 |
+
"Location": st.column_config.TextColumn(width="medium"),
|
| 240 |
+
"Top Skills": st.column_config.TextColumn(width="large"),
|
| 241 |
+
"Employees": st.column_config.TextColumn(width="small")
|
| 242 |
+
}
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
st.info("π‘ **Tip:** Scores above 0.6 indicate strong alignment between candidate skills and company requirements!")
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def display_stats_overview(
|
| 249 |
+
candidate_data: Dict[str, Any],
|
| 250 |
+
matches: List[Tuple[int, float, Dict[str, Any]]]
|
| 251 |
+
):
|
| 252 |
+
"""
|
| 253 |
+
Display overview statistics about the matching results.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
candidate_data: Candidate information
|
| 257 |
+
matches: List of matches
|
| 258 |
+
"""
|
| 259 |
+
|
| 260 |
+
st.markdown("### π Matching Overview")
|
| 261 |
+
|
| 262 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 263 |
+
|
| 264 |
+
with col1:
|
| 265 |
+
st.metric(
|
| 266 |
+
"Total Matches",
|
| 267 |
+
len(matches),
|
| 268 |
+
help="Number of companies analyzed"
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
with col2:
|
| 272 |
+
avg_score = sum(score for _, score, _ in matches) / len(matches) if matches else 0
|
| 273 |
+
st.metric(
|
| 274 |
+
"Average Score",
|
| 275 |
+
f"{avg_score:.1%}",
|
| 276 |
+
help="Average similarity score"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
with col3:
|
| 280 |
+
excellent = sum(1 for _, score, _ in matches if score >= 0.7)
|
| 281 |
+
st.metric(
|
| 282 |
+
"Excellent Matches",
|
| 283 |
+
excellent,
|
| 284 |
+
help="Matches with score β₯ 70%"
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
with col4:
|
| 288 |
+
best_score = max((score for _, score, _ in matches), default=0)
|
| 289 |
+
st.metric(
|
| 290 |
+
"Best Match",
|
| 291 |
+
f"{best_score:.1%}",
|
| 292 |
+
help="Highest similarity score"
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
st.markdown("---")
|