Spaces:
Running
Running
| import pickle | |
| import gradio as gr | |
| from datasets import load_dataset | |
| from transformers import AutoModel, AutoFeatureExtractor | |
| from PIL import Image | |
| # Only runs once when the script is first run. | |
| with open("butts_1024_new.pickle", "rb") as handle: | |
| index = pickle.load(handle) | |
| # Load model for computing embeddings. | |
| feature_extractor = AutoFeatureExtractor.from_pretrained( | |
| "sasha/autotrain-butterfly-similarity-2490576840" | |
| ) | |
| model = AutoModel.from_pretrained("sasha/autotrain-butterfly-similarity-2490576840") | |
| # Candidate images. | |
| dataset = load_dataset("sasha/butterflies_10k_names_multiple") | |
| ds = dataset["train"] | |
| def query(image, top_k=1): | |
| inputs = feature_extractor(image, return_tensors="pt") | |
| model_output = model(**inputs) | |
| embedding = model_output.pooler_output.detach() | |
| results = index.query(embedding, k=top_k) | |
| inx = results[0][0].tolist() | |
| logits = results[1][0].tolist() | |
| butterfly = ds.select(inx)["image"][0] | |
| return overlay_png_on_side_by_side_images( | |
| image, butterfly, "cadre.png", png_position=(0, 0) | |
| ) | |
| def overlay_png_on_side_by_side_images( | |
| person_image_path, insect_image_path, overlay_image_path, png_position=(0, 0) | |
| ): | |
| """ | |
| Overlays a PNG image onto two side-by-side images, resizing them to fit. | |
| Args: | |
| image1_path (str): Path to the first image. | |
| image2_path (str): Path to the second image. | |
| png_path (str): Path to the PNG image to overlay. | |
| output_path (str): Path to save the resulting image. | |
| png_position (tuple): (x, y) coordinates for the top-left corner of the PNG overlay. | |
| """ | |
| # Open images | |
| img1 = Image.fromarray(person_image_path).convert("RGBA") | |
| img2 = insect_image_path.convert("RGBA") | |
| png_img = Image.open(overlay_image_path).convert("RGBA") | |
| # Determine a common height for side-by-side images | |
| min_height = 384 | |
| # Resize images to the common height, maintaining aspect ratio | |
| img1 = img1.resize((288, 384), Image.LANCZOS) | |
| img2 = img2.resize((288, 384), Image.LANCZOS) | |
| combined_width = img1.width + img2.width | |
| # Create a blank canvas for the combined image | |
| combined_image = Image.new( | |
| "RGBA", (combined_width, min_height), (0, 0, 0, 0) | |
| ) # Transparent background | |
| # Paste images side by side | |
| combined_image.paste(img1, (0, 0)) | |
| combined_image.paste(img2, (img1.width, 0)) | |
| # Resize PNG to fit within the combined image dimensions if necessary, or to a desired size | |
| # For simplicity, let's resize the PNG to a quarter of the combined image's width, maintaining aspect ratio | |
| target_png_width = combined_image.width | |
| png_img = png_img.resize((combined_image.width, min_height), Image.LANCZOS) | |
| # Overlay the PNG image | |
| combined_image.paste(png_img, png_position, png_img) | |
| # Save the result | |
| # Determine a common height for side-by-side images | |
| min_height = 384 | |
| # Resize images to the common height, maintaining aspect ratio | |
| img1 = img1.resize((288, 384), Image.LANCZOS) | |
| img2 = img2.resize((288, 384), Image.LANCZOS) | |
| combined_width = img1.width + img2.width | |
| # Create a blank canvas for the combined image | |
| combined_image = Image.new( | |
| "RGBA", (combined_width, min_height), (0, 0, 0, 0) | |
| ) # Transparent background | |
| # Paste images side by side | |
| combined_image.paste(img1, (0, 0)) | |
| combined_image.paste(img2, (img1.width, 0)) | |
| # Resize PNG to fit within the combined image dimensions if necessary, or to a desired size | |
| # For simplicity, let's resize the PNG to a quarter of the combined image's width, maintaining aspect ratio | |
| target_png_width = combined_image.width | |
| png_img = png_img.resize((combined_image.width, min_height), Image.LANCZOS) | |
| # Overlay the PNG image | |
| combined_image.paste(png_img, png_position, png_img) | |
| return combined_image | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Find my Butterfly 🦋") | |
| gr.Markdown( | |
| "## Use this Space to find your butterfly, based on the [iNaturalist butterfly dataset](https://huggingface.co/datasets/huggan/inat_butterflies_top10k)!" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| inputs = gr.Image(width=288, height=384) | |
| btn = gr.Button("Find my butterfly!") | |
| description = gr.Markdown() | |
| with gr.Column(scale=2): | |
| outputs = gr.Image() | |
| gr.Markdown("### Image Examples") | |
| gr.Examples( | |
| examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"], | |
| inputs=inputs, | |
| outputs=outputs, | |
| fn=query, | |
| cache_examples=True, | |
| ) | |
| btn.click(query, inputs, outputs) | |
| demo.launch() | |