File size: 13,995 Bytes
1567f8d 99481de 60a3137 1e0ecd6 99481de 1567f8d 71ced98 933228b 71ced98 11d644c 933228b 11d644c 1567f8d 71ced98 11d644c 99481de 1e0ecd6 99481de 1567f8d 1e0ecd6 1567f8d 1e0ecd6 1567f8d 99481de 1e0ecd6 1567f8d 99481de 1e0ecd6 1567f8d 1e0ecd6 60a3137 99481de 60a3137 11d644c 60a3137 11d644c 71ced98 11d644c 71ced98 11d644c 99481de 1e0ecd6 1567f8d 1e0ecd6 11d644c 99481de 1e0ecd6 1567f8d 71ced98 11d644c 71ced98 1e0ecd6 71ced98 11d644c 1e0ecd6 11d644c 1e0ecd6 71ced98 11d644c 71ced98 1e0ecd6 1567f8d 1e0ecd6 1567f8d 1e0ecd6 1567f8d 99481de 1567f8d 1e0ecd6 1567f8d 1e0ecd6 1567f8d 1e0ecd6 71ced98 1e0ecd6 1567f8d 1e0ecd6 1567f8d 1e0ecd6 99481de 1567f8d 1e0ecd6 1567f8d 1e0ecd6 1567f8d 1e0ecd6 1567f8d 99481de 1567f8d 71ced98 1e0ecd6 11d644c 71ced98 11d644c 1e0ecd6 11d644c 1e0ecd6 1567f8d 1e0ecd6 11d644c 1e0ecd6 11d644c 1e0ecd6 99481de 11d644c 71ced98 11d644c 71ced98 1e0ecd6 11d644c 71ced98 11d644c 71ced98 1e0ecd6 71ced98 11d644c 71ced98 11d644c 1e0ecd6 11d644c 1e0ecd6 11d644c 1e0ecd6 11d644c 71ced98 1e0ecd6 11d644c 1e0ecd6 71ced98 11d644c 71ced98 1e0ecd6 71ced98 1e0ecd6 71ced98 1e0ecd6 71ced98 1e0ecd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# app.py
# Invoice Extraction — Donut (public HF model) + Tesseract tables
# Robust PDF handling:
# 1) Try pdf2image with Poppler path detection (Fix A)
# 2) If Poppler is missing, auto-fallback to PyMuPDF (no Poppler required)
import os, io, re, json, shutil
from typing import List
import numpy as np
import pandas as pd
from PIL import Image, ImageOps, ImageFilter
import streamlit as st
# OCR (detection only) and PDF->image
import pytesseract
from pytesseract import Output
from pdf2image import convert_from_bytes
# HF Donut (public model)
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
# ------------------------------------------------------------------
st.set_page_config(
page_title="Invoice Extraction — Donut (public) + Tesseract tables",
layout="wide"
)
device = "cuda" if torch.cuda.is_available() else "cpu"
# ----------------------------- Sidebar -----------------------------
st.sidebar.header("Model (Hugging Face — public)")
model_id = st.sidebar.text_input(
"HF model id",
value="naver-clova-ix/donut-base-finetuned-cord-v2",
help="Use a public model id; this one works without token."
)
task_prompt = st.sidebar.text_input(
"Task prompt (Donut)",
value="<s_cord-v2>",
help="Keep default for CORD-style invoices."
)
det_lang = st.sidebar.text_input("Tesseract language(s) — detection only", value="eng")
show_boxes = st.sidebar.checkbox("Show word boxes (debug)", value=False)
# ----------------------------- PDF loader (Fix A + fallback) -----------------------------
def _find_poppler_path():
# Return a folder containing pdfinfo/pdftoppm if not on PATH
if shutil.which("pdfinfo") and shutil.which("pdftoppm"):
return None
for p in ["/usr/bin", "/usr/local/bin", "/usr/share/bin"]:
if os.path.exists(os.path.join(p, "pdfinfo")) and os.path.exists(os.path.join(p, "pdftoppm")):
return p
return None
def _pages_via_pdf2image(file_bytes: bytes) -> List[Image.Image]:
poppler_path = _find_poppler_path()
if poppler_path:
return convert_from_bytes(file_bytes, dpi=300, poppler_path=poppler_path)
else:
return convert_from_bytes(file_bytes, dpi=300)
def _pages_via_pymupdf(file_bytes: bytes) -> List[Image.Image]:
import fitz # PyMuPDF
doc = fitz.open(stream=file_bytes, filetype="pdf")
pages = []
for page in doc:
# Use a mild upscale for better OCR if you want: matrix = fitz.Matrix(2, 2)
pix = page.get_pixmap() # or: page.get_pixmap(matrix=matrix)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
pages.append(img)
return pages
def load_pages(file_bytes: bytes, name: str) -> List[Image.Image]:
name = (name or "").lower()
if name.endswith(".pdf"):
# Try Poppler route first
try:
return _pages_via_pdf2image(file_bytes)
except Exception:
# Fallback: PyMuPDF (no Poppler required)
return _pages_via_pymupdf(file_bytes)
return [Image.open(io.BytesIO(file_bytes)).convert("RGB")]
def preprocess_for_detection(img: Image.Image) -> Image.Image:
g = ImageOps.grayscale(img)
g = ImageOps.autocontrast(g)
g = g.filter(ImageFilter.UnsharpMask(radius=1, percent=150, threshold=3))
return g
# ----------------------------- Donut loader -----------------------------
@st.cache_resource(show_spinner=True)
def load_donut(_model_id: str):
processor = DonutProcessor.from_pretrained(_model_id)
model = VisionEncoderDecoderModel.from_pretrained(_model_id)
model.to(device).eval()
return processor, model
def donut_infer(img: Image.Image, processor: DonutProcessor, model: VisionEncoderDecoderModel, prompt: str):
inputs = processor(images=img, text=prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(**inputs, max_length=1024, num_beams=1, early_stopping=True)
seq = processor.batch_decode(outputs, skip_special_tokens=True)[0]
parsed = None
try:
start = seq.find("{")
end = seq.rfind("}")
if start != -1 and end != -1 and end > start:
parsed = json.loads(seq[start:end+1])
except Exception:
parsed = None
return seq, parsed
# ----------------------------- Key fields & tables -----------------------------
CURRENCY = r"(?P<curr>USD|CAD|EUR|GBP|\$|C\$|€|£)?"
MONEY = rf"{CURRENCY}\s?(?P<amt>\d{{1,3}}(?:[,]\d{{3}})*(?:[.]\d{{2}})?)"
DATE = r"(?P<date>(?:\d{4}[-/]\d{1,2}[-/]\d{1,2})|(?:\d{1,2}[-/]\d{1,2}[-/]\d{2,4})|(?:[A-Za-z]{3,9}\s+\d{1,2},\s*\d{2,4}))"
INV_PAT = r"(?:invoice\s*(?:no\.?|#|number)?\s*[:\-]?\s*(?P<inv>[A-Z0-9\-_/]{4,}))"
PO_PAT = r"(?:po\s*(?:no\.?|#|number)?\s*[:\-]?\s*(?P<po>[A-Z0-9\-_/]{3,}))"
TOTAL_PAT = rf"(?:\b(total(?:\s*amount)?|amount\s*due|grand\s*total)\b.*?{MONEY})"
SUBTOTAL_PAT = rf"(?:\bsub\s*total\b.*?{MONEY})"
TAX_PAT = rf"(?:\b(tax|gst|vat|hst)\b.*?{MONEY})"
def parse_fields_regex(fulltext: str):
t = re.sub(r"[ \t]+", " ", fulltext)
t = re.sub(r"\n{2,}", "\n", t)
out = {"invoice_number":None,"invoice_date":None,"po_number":None,"subtotal":None,"tax":None,"total":None,"currency":None}
m = re.search(INV_PAT, t, re.I); out["invoice_number"] = m.group("inv") if m else None
m = re.search(PO_PAT, t, re.I); out["po_number"] = m.group("po") if m else None
m = re.search(rf"(invoice\s*date[:\-\s]*){DATE}", t, re.I)
out["invoice_date"] = (m.group("date") if m else (re.search(DATE, t, re.I).group("date") if re.search(DATE, t, re.I) else None))
m = re.search(SUBTOTAL_PAT, t, re.I|re.S);
if m: out["subtotal"], out["currency"] = m.group("amt").replace(",",""), m.group("curr") or out["currency"]
m = re.search(TAX_PAT, t, re.I|re.S);
if m: out["tax"], out["currency"] = m.group("amt").replace(",",""), m.group("curr") or out["currency"]
m = re.search(TOTAL_PAT, t, re.I|re.S);
if m:
out["total"], out["currency"] = m.group("amt").replace(",", ""), m.group("curr") or out["currency"]
if out["currency"] in ["$", "C$", "€", "£"]:
out["currency"] = {"$":"USD", "C$":"CAD", "€":"EUR", "£":"GBP"}[out["currency"]]
return out
def normalize_kv_from_donut(parsed: dict):
out = {k: None for k in ["invoice_number","invoice_date","po_number","subtotal","tax","total","currency"]}
def search_keys(obj, key_list):
if isinstance(obj, dict):
for k, v in obj.items():
kl = k.lower()
if any(kk in kl for kk in key_list):
return v if isinstance(v, str) else None
found = search_keys(v, key_list)
if found is not None:
return found
elif isinstance(obj, list):
for it in obj:
found = search_keys(it, key_list)
if found is not None:
return found
return None
mapping = {
"invoice_number": ["invoice_number","invoice no","invoice_no","invoice","inv_no"],
"invoice_date": ["invoice_date","date","bill_date"],
"po_number": ["po_number","po","purchase_order"],
"subtotal": ["subtotal","sub_total"],
"tax": ["tax","gst","vat","hst"],
"total": ["total","amount_total","amount_due","grand_total"],
}
for k, keys in mapping.items():
val = search_keys(parsed, keys)
if isinstance(val, str):
out[k] = val.strip()
txt = json.dumps(parsed, ensure_ascii=False)
m = re.search(r"(USD|CAD|EUR|GBP|\$|C\$|€|£)", txt, re.I)
if m:
sym = m.group(1)
out["currency"] = {"$":"USD","C$":"CAD","€":"EUR","£":"GBP"}.get(sym, sym.upper())
return out
def items_from_words_simple(tsv: pd.DataFrame) -> pd.DataFrame:
HEAD_CANDIDATES = ["description","item","qty","quantity","price","unit","rate","amount","total"]
if tsv.empty:
return pd.DataFrame()
lines = []
for (b,p,l), g in tsv.groupby(["block_num","par_num","line_num"]):
text = " ".join([w for w in g["text"].astype(str).tolist() if w.strip()])
if text.strip():
lines.append({
"block_num": b, "par_num": p, "line_num": l,
"text": text.lower(),
"top": g["top"].min(), "bottom": (g["top"]+g["height"]).max(),
"left": g["left"].min(), "right": (g["left"]+g["width"]).max()
})
L = pd.DataFrame(lines)
if L.empty:
return pd.DataFrame()
L["header_score"] = L["text"].apply(lambda s: sum(1 for h in HEAD_CANDIDATES if h in s))
hdrs = L[L["header_score"] >= 2].sort_values(["header_score","top"], ascending=[False,True])
if hdrs.empty:
return pd.DataFrame()
H = hdrs.iloc[0]
header_top, header_bottom = H["top"], H["bottom"]
header_words = tsv[(tsv["top"] >= header_top - 5) & ((tsv["top"] + tsv["height"]) <= header_bottom + 5)]
header_words = header_words.sort_values("left")
if header_words.empty:
return pd.DataFrame()
xs = header_words["left"].tolist()
hdr_tokens = [t.lower() for t in header_words["text"].tolist()]
below = tsv[tsv["top"] > header_bottom + 5].copy()
totals_mask = below["text"].str.lower().str.contains(
r"(sub\s*total|amount\s*due|total|grand\s*total|balance)", regex=True, na=False
)
if totals_mask.any():
stop_y = below.loc[totals_mask, "top"].min()
below = below[below["top"] < stop_y - 4]
if below.empty:
return pd.DataFrame()
rows = []
for (b,p,l), g in below.groupby(["block_num","par_num","line_num"]):
g = g.sort_values("left")
buckets = {i:[] for i in range(len(xs))}
for _, w in g.iterrows():
if not str(w["text"]).strip():
continue
idx = int(np.abs(np.array(xs) - w["left"]).argmin())
buckets[idx].append(str(w["text"]))
vals = [" ".join(buckets[i]).strip() for i in range(len(xs))]
if any(vals):
rows.append(vals)
if not rows:
return pd.DataFrame()
df_rows = pd.DataFrame(rows).fillna("")
names = []
for i in range(df_rows.shape[1]):
wl = hdr_tokens[i] if i < len(hdr_tokens) else f"col_{i}"
if "desc" in wl or wl in ["item","description"]:
names.append("description")
elif wl in ["qty","quantity"]:
names.append("quantity")
elif "unit" in wl or "rate" in wl or "price" in wl:
names.append("unit_price")
elif "amount" in wl or "total" in wl:
names.append("line_total")
else:
names.append(f"col_{i}")
df_rows.columns = names
df_rows = df_rows[~(df_rows.fillna("").apply(lambda r: "".join(r.values), axis=1).str.strip()=="")]
return df_rows.reset_index(drop=True)
# ----------------------------- App -----------------------------
st.title("Invoice Extraction — Donut (public) + Tesseract tables")
up = st.file_uploader("Upload an invoice (PDF/JPG/PNG)", type=["pdf","png","jpg","jpeg"])
if not up:
st.info("Upload a scanned invoice to begin.")
st.stop()
with st.spinner(f"Loading model '{model_id}' from Hugging Face…"):
processor, donut_model = load_donut(model_id)
pages = load_pages(up.read(), up.name)
page_idx = 0
if len(pages) > 1:
page_idx = st.number_input("Page", 1, len(pages), 1) - 1
img = pages[page_idx]
col1, col2 = st.columns([1.1, 1.3], gap="large")
with col1:
st.subheader("Preview")
st.image(img, use_column_width=True)
det_img = preprocess_for_detection(img)
with st.expander("Detection view (preprocessed for boxes)"):
st.image(det_img, use_column_width=True)
with col2:
st.subheader("OCR & Extraction")
with st.spinner("Running Donut…"):
seq, parsed = donut_infer(img, processor, donut_model, task_prompt)
if parsed:
key_fields = normalize_kv_from_donut(parsed)
donut_payload = parsed
else:
key_fields = parse_fields_regex(seq)
donut_payload = {"generated_text": seq}
k1,k2,k3 = st.columns(3)
with k1:
st.write(f"**Invoice #:** {key_fields.get('invoice_number') or '—'}")
st.write(f"**Invoice Date:** {key_fields.get('invoice_date') or '—'}")
with k2:
st.write(f"**PO #:** {key_fields.get('po_number') or '—'}")
st.write(f"**Subtotal:** {key_fields.get('subtotal') or '—'}")
with k3:
st.write(f"**Tax:** {key_fields.get('tax') or '—'}")
tot = key_fields.get('total') or '—'
cur = key_fields.get('currency') or ''
st.write(f"**Total:** {tot} {cur}".strip())
with st.spinner("Detecting words with Tesseract (for table)…"):
tsv = pytesseract.image_to_data(det_img, lang=det_lang, output_type=Output.DATAFRAME)
tsv = tsv.dropna(subset=["text"]).reset_index(drop=True)
tsv["x2"] = tsv["left"] + tsv["width"]
tsv["y2"] = tsv["top"] + tsv["height"]
st.markdown("**Line Items**")
items = items_from_words_simple(tsv)
if items.empty:
st.caption("No line items confidently detected.")
else:
st.dataframe(items, use_container_width=True)
result = {
"file": up.name,
"page": page_idx + 1,
"key_fields": key_fields,
"items": items.to_dict(orient="records") if not items.empty else [],
"donut_raw": donut_payload,
}
st.download_button("Download JSON", data=json.dumps(result, indent=2),
file_name="invoice_extraction.json", mime="application/json")
if not items.empty:
st.download_button("Download Items CSV", data=items.to_csv(index=False),
file_name="invoice_items.csv", mime="text/csv")
if show_boxes:
st.caption("First 20 Tesseract word boxes")
st.dataframe(tsv[["left","top","width","height","text","conf"]].head(20), use_container_width=True)
|