Create utils_ctc.py
Browse files- pdrt/utils_ctc.py +43 -0
pdrt/utils_ctc.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 3 |
+
|
| 4 |
+
# CTC collate
|
| 5 |
+
def custom_collate(data):
|
| 6 |
+
|
| 7 |
+
target_lengths = [len(d['label']) for d in data]
|
| 8 |
+
labels = [d['label'] for d in data]
|
| 9 |
+
inputs = [d['img'].tolist() for d in data]
|
| 10 |
+
idx = [d['idx'] for d in data]
|
| 11 |
+
raw_label = [d['raw_label'] for d in data]
|
| 12 |
+
|
| 13 |
+
target_lengths = torch.tensor(target_lengths)
|
| 14 |
+
labels = pad_sequence(labels, batch_first=True)
|
| 15 |
+
inputs = torch.tensor(inputs)
|
| 16 |
+
idx = torch.tensor(idx)
|
| 17 |
+
|
| 18 |
+
return { #(6)
|
| 19 |
+
'idx': idx,
|
| 20 |
+
'img': inputs,
|
| 21 |
+
'label': labels,
|
| 22 |
+
'target_lengths': target_lengths,
|
| 23 |
+
'raw_label': raw_label,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
def create_char_dicts(list_strings):
|
| 27 |
+
text_to_seq = {}
|
| 28 |
+
seq_to_text = {}
|
| 29 |
+
value = 1 # 0 is blank token
|
| 30 |
+
|
| 31 |
+
for text in list_strings:
|
| 32 |
+
for character in text:
|
| 33 |
+
if character not in text_to_seq:
|
| 34 |
+
text_to_seq[character] = value
|
| 35 |
+
seq_to_text[value] = character
|
| 36 |
+
value += 1
|
| 37 |
+
return text_to_seq, seq_to_text
|
| 38 |
+
|
| 39 |
+
def sample_text_to_seq(list_strings, mydict):
|
| 40 |
+
return [mydict.get(character, "") for character in list_strings]
|
| 41 |
+
|
| 42 |
+
def sample_seq_to_text(list_strings, mydict):
|
| 43 |
+
return ''.join([mydict.get(character, "") for character in list_strings])
|