# app.py # Invoice Extraction — Donut (public HF model) + Tesseract tables # Robust PDF handling: # 1) Try pdf2image with Poppler path detection (Fix A) # 2) If Poppler is missing, auto-fallback to PyMuPDF (no Poppler required) import os, io, re, json, shutil from typing import List import numpy as np import pandas as pd from PIL import Image, ImageOps, ImageFilter import streamlit as st # OCR (detection only) and PDF->image import pytesseract from pytesseract import Output from pdf2image import convert_from_bytes # HF Donut (public model) import torch from transformers import DonutProcessor, VisionEncoderDecoderModel # ------------------------------------------------------------------ st.set_page_config( page_title="Invoice Extraction — Donut (public) + Tesseract tables", layout="wide" ) device = "cuda" if torch.cuda.is_available() else "cpu" # ----------------------------- Sidebar ----------------------------- st.sidebar.header("Model (Hugging Face — public)") model_id = st.sidebar.text_input( "HF model id", value="naver-clova-ix/donut-base-finetuned-cord-v2", help="Use a public model id; this one works without token." ) task_prompt = st.sidebar.text_input( "Task prompt (Donut)", value="", help="Keep default for CORD-style invoices." ) det_lang = st.sidebar.text_input("Tesseract language(s) — detection only", value="eng") show_boxes = st.sidebar.checkbox("Show word boxes (debug)", value=False) # ----------------------------- PDF loader (Fix A + fallback) ----------------------------- def _find_poppler_path(): # Return a folder containing pdfinfo/pdftoppm if not on PATH if shutil.which("pdfinfo") and shutil.which("pdftoppm"): return None for p in ["/usr/bin", "/usr/local/bin", "/usr/share/bin"]: if os.path.exists(os.path.join(p, "pdfinfo")) and os.path.exists(os.path.join(p, "pdftoppm")): return p return None def _pages_via_pdf2image(file_bytes: bytes) -> List[Image.Image]: poppler_path = _find_poppler_path() if poppler_path: return convert_from_bytes(file_bytes, dpi=300, poppler_path=poppler_path) else: return convert_from_bytes(file_bytes, dpi=300) def _pages_via_pymupdf(file_bytes: bytes) -> List[Image.Image]: import fitz # PyMuPDF doc = fitz.open(stream=file_bytes, filetype="pdf") pages = [] for page in doc: # Use a mild upscale for better OCR if you want: matrix = fitz.Matrix(2, 2) pix = page.get_pixmap() # or: page.get_pixmap(matrix=matrix) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) pages.append(img) return pages def load_pages(file_bytes: bytes, name: str) -> List[Image.Image]: name = (name or "").lower() if name.endswith(".pdf"): # Try Poppler route first try: return _pages_via_pdf2image(file_bytes) except Exception: # Fallback: PyMuPDF (no Poppler required) return _pages_via_pymupdf(file_bytes) return [Image.open(io.BytesIO(file_bytes)).convert("RGB")] def preprocess_for_detection(img: Image.Image) -> Image.Image: g = ImageOps.grayscale(img) g = ImageOps.autocontrast(g) g = g.filter(ImageFilter.UnsharpMask(radius=1, percent=150, threshold=3)) return g # ----------------------------- Donut loader ----------------------------- @st.cache_resource(show_spinner=True) def load_donut(_model_id: str): processor = DonutProcessor.from_pretrained(_model_id) model = VisionEncoderDecoderModel.from_pretrained(_model_id) model.to(device).eval() return processor, model def donut_infer(img: Image.Image, processor: DonutProcessor, model: VisionEncoderDecoderModel, prompt: str): inputs = processor(images=img, text=prompt, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_length=1024, num_beams=1, early_stopping=True) seq = processor.batch_decode(outputs, skip_special_tokens=True)[0] parsed = None try: start = seq.find("{") end = seq.rfind("}") if start != -1 and end != -1 and end > start: parsed = json.loads(seq[start:end+1]) except Exception: parsed = None return seq, parsed # ----------------------------- Key fields & tables ----------------------------- CURRENCY = r"(?PUSD|CAD|EUR|GBP|\$|C\$|€|£)?" MONEY = rf"{CURRENCY}\s?(?P\d{{1,3}}(?:[,]\d{{3}})*(?:[.]\d{{2}})?)" DATE = r"(?P(?:\d{4}[-/]\d{1,2}[-/]\d{1,2})|(?:\d{1,2}[-/]\d{1,2}[-/]\d{2,4})|(?:[A-Za-z]{3,9}\s+\d{1,2},\s*\d{2,4}))" INV_PAT = r"(?:invoice\s*(?:no\.?|#|number)?\s*[:\-]?\s*(?P[A-Z0-9\-_/]{4,}))" PO_PAT = r"(?:po\s*(?:no\.?|#|number)?\s*[:\-]?\s*(?P[A-Z0-9\-_/]{3,}))" TOTAL_PAT = rf"(?:\b(total(?:\s*amount)?|amount\s*due|grand\s*total)\b.*?{MONEY})" SUBTOTAL_PAT = rf"(?:\bsub\s*total\b.*?{MONEY})" TAX_PAT = rf"(?:\b(tax|gst|vat|hst)\b.*?{MONEY})" def parse_fields_regex(fulltext: str): t = re.sub(r"[ \t]+", " ", fulltext) t = re.sub(r"\n{2,}", "\n", t) out = {"invoice_number":None,"invoice_date":None,"po_number":None,"subtotal":None,"tax":None,"total":None,"currency":None} m = re.search(INV_PAT, t, re.I); out["invoice_number"] = m.group("inv") if m else None m = re.search(PO_PAT, t, re.I); out["po_number"] = m.group("po") if m else None m = re.search(rf"(invoice\s*date[:\-\s]*){DATE}", t, re.I) out["invoice_date"] = (m.group("date") if m else (re.search(DATE, t, re.I).group("date") if re.search(DATE, t, re.I) else None)) m = re.search(SUBTOTAL_PAT, t, re.I|re.S); if m: out["subtotal"], out["currency"] = m.group("amt").replace(",",""), m.group("curr") or out["currency"] m = re.search(TAX_PAT, t, re.I|re.S); if m: out["tax"], out["currency"] = m.group("amt").replace(",",""), m.group("curr") or out["currency"] m = re.search(TOTAL_PAT, t, re.I|re.S); if m: out["total"], out["currency"] = m.group("amt").replace(",", ""), m.group("curr") or out["currency"] if out["currency"] in ["$", "C$", "€", "£"]: out["currency"] = {"$":"USD", "C$":"CAD", "€":"EUR", "£":"GBP"}[out["currency"]] return out def normalize_kv_from_donut(parsed: dict): out = {k: None for k in ["invoice_number","invoice_date","po_number","subtotal","tax","total","currency"]} def search_keys(obj, key_list): if isinstance(obj, dict): for k, v in obj.items(): kl = k.lower() if any(kk in kl for kk in key_list): return v if isinstance(v, str) else None found = search_keys(v, key_list) if found is not None: return found elif isinstance(obj, list): for it in obj: found = search_keys(it, key_list) if found is not None: return found return None mapping = { "invoice_number": ["invoice_number","invoice no","invoice_no","invoice","inv_no"], "invoice_date": ["invoice_date","date","bill_date"], "po_number": ["po_number","po","purchase_order"], "subtotal": ["subtotal","sub_total"], "tax": ["tax","gst","vat","hst"], "total": ["total","amount_total","amount_due","grand_total"], } for k, keys in mapping.items(): val = search_keys(parsed, keys) if isinstance(val, str): out[k] = val.strip() txt = json.dumps(parsed, ensure_ascii=False) m = re.search(r"(USD|CAD|EUR|GBP|\$|C\$|€|£)", txt, re.I) if m: sym = m.group(1) out["currency"] = {"$":"USD","C$":"CAD","€":"EUR","£":"GBP"}.get(sym, sym.upper()) return out def items_from_words_simple(tsv: pd.DataFrame) -> pd.DataFrame: HEAD_CANDIDATES = ["description","item","qty","quantity","price","unit","rate","amount","total"] if tsv.empty: return pd.DataFrame() lines = [] for (b,p,l), g in tsv.groupby(["block_num","par_num","line_num"]): text = " ".join([w for w in g["text"].astype(str).tolist() if w.strip()]) if text.strip(): lines.append({ "block_num": b, "par_num": p, "line_num": l, "text": text.lower(), "top": g["top"].min(), "bottom": (g["top"]+g["height"]).max(), "left": g["left"].min(), "right": (g["left"]+g["width"]).max() }) L = pd.DataFrame(lines) if L.empty: return pd.DataFrame() L["header_score"] = L["text"].apply(lambda s: sum(1 for h in HEAD_CANDIDATES if h in s)) hdrs = L[L["header_score"] >= 2].sort_values(["header_score","top"], ascending=[False,True]) if hdrs.empty: return pd.DataFrame() H = hdrs.iloc[0] header_top, header_bottom = H["top"], H["bottom"] header_words = tsv[(tsv["top"] >= header_top - 5) & ((tsv["top"] + tsv["height"]) <= header_bottom + 5)] header_words = header_words.sort_values("left") if header_words.empty: return pd.DataFrame() xs = header_words["left"].tolist() hdr_tokens = [t.lower() for t in header_words["text"].tolist()] below = tsv[tsv["top"] > header_bottom + 5].copy() totals_mask = below["text"].str.lower().str.contains( r"(sub\s*total|amount\s*due|total|grand\s*total|balance)", regex=True, na=False ) if totals_mask.any(): stop_y = below.loc[totals_mask, "top"].min() below = below[below["top"] < stop_y - 4] if below.empty: return pd.DataFrame() rows = [] for (b,p,l), g in below.groupby(["block_num","par_num","line_num"]): g = g.sort_values("left") buckets = {i:[] for i in range(len(xs))} for _, w in g.iterrows(): if not str(w["text"]).strip(): continue idx = int(np.abs(np.array(xs) - w["left"]).argmin()) buckets[idx].append(str(w["text"])) vals = [" ".join(buckets[i]).strip() for i in range(len(xs))] if any(vals): rows.append(vals) if not rows: return pd.DataFrame() df_rows = pd.DataFrame(rows).fillna("") names = [] for i in range(df_rows.shape[1]): wl = hdr_tokens[i] if i < len(hdr_tokens) else f"col_{i}" if "desc" in wl or wl in ["item","description"]: names.append("description") elif wl in ["qty","quantity"]: names.append("quantity") elif "unit" in wl or "rate" in wl or "price" in wl: names.append("unit_price") elif "amount" in wl or "total" in wl: names.append("line_total") else: names.append(f"col_{i}") df_rows.columns = names df_rows = df_rows[~(df_rows.fillna("").apply(lambda r: "".join(r.values), axis=1).str.strip()=="")] return df_rows.reset_index(drop=True) # ----------------------------- App ----------------------------- st.title("Invoice Extraction — Donut (public) + Tesseract tables") up = st.file_uploader("Upload an invoice (PDF/JPG/PNG)", type=["pdf","png","jpg","jpeg"]) if not up: st.info("Upload a scanned invoice to begin.") st.stop() with st.spinner(f"Loading model '{model_id}' from Hugging Face…"): processor, donut_model = load_donut(model_id) pages = load_pages(up.read(), up.name) page_idx = 0 if len(pages) > 1: page_idx = st.number_input("Page", 1, len(pages), 1) - 1 img = pages[page_idx] col1, col2 = st.columns([1.1, 1.3], gap="large") with col1: st.subheader("Preview") st.image(img, use_column_width=True) det_img = preprocess_for_detection(img) with st.expander("Detection view (preprocessed for boxes)"): st.image(det_img, use_column_width=True) with col2: st.subheader("OCR & Extraction") with st.spinner("Running Donut…"): seq, parsed = donut_infer(img, processor, donut_model, task_prompt) if parsed: key_fields = normalize_kv_from_donut(parsed) donut_payload = parsed else: key_fields = parse_fields_regex(seq) donut_payload = {"generated_text": seq} k1,k2,k3 = st.columns(3) with k1: st.write(f"**Invoice #:** {key_fields.get('invoice_number') or '—'}") st.write(f"**Invoice Date:** {key_fields.get('invoice_date') or '—'}") with k2: st.write(f"**PO #:** {key_fields.get('po_number') or '—'}") st.write(f"**Subtotal:** {key_fields.get('subtotal') or '—'}") with k3: st.write(f"**Tax:** {key_fields.get('tax') or '—'}") tot = key_fields.get('total') or '—' cur = key_fields.get('currency') or '' st.write(f"**Total:** {tot} {cur}".strip()) with st.spinner("Detecting words with Tesseract (for table)…"): tsv = pytesseract.image_to_data(det_img, lang=det_lang, output_type=Output.DATAFRAME) tsv = tsv.dropna(subset=["text"]).reset_index(drop=True) tsv["x2"] = tsv["left"] + tsv["width"] tsv["y2"] = tsv["top"] + tsv["height"] st.markdown("**Line Items**") items = items_from_words_simple(tsv) if items.empty: st.caption("No line items confidently detected.") else: st.dataframe(items, use_container_width=True) result = { "file": up.name, "page": page_idx + 1, "key_fields": key_fields, "items": items.to_dict(orient="records") if not items.empty else [], "donut_raw": donut_payload, } st.download_button("Download JSON", data=json.dumps(result, indent=2), file_name="invoice_extraction.json", mime="application/json") if not items.empty: st.download_button("Download Items CSV", data=items.to_csv(index=False), file_name="invoice_items.csv", mime="text/csv") if show_boxes: st.caption("First 20 Tesseract word boxes") st.dataframe(tsv[["left","top","width","height","text","conf"]].head(20), use_container_width=True)