File size: 21,175 Bytes
ce706b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
from sentence_transformers import SentenceTransformer
import faiss
import json
import os
from flask import Flask, request, jsonify
from werkzeug.utils import secure_filename
from flask_cors import CORS
from anthropic import Anthropic
import re
from dotenv import load_dotenv
load_dotenv()
UPLOAD_FOLDER = "uploads"
VECTOR_FOLDER = "vectorized"
ALLOWED_EXTENSIONS = {"json","md","txt"}
if not os.path.exists(UPLOAD_FOLDER):
os.mkdir(UPLOAD_FOLDER)
if not os.path.exists(VECTOR_FOLDER):
os.mkdir(VECTOR_FOLDER)
app = Flask(__name__)
CORS(app)
app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
api_key = os.environ.get("ANTHROPIC_API_KEY")
hf_token = hf_token = os.environ.get("HF_TOKEN")
anthropic_client = Anthropic(api_key=api_key)
embedder = SentenceTransformer("BAAI/bge-large-en-v1.5", use_auth_token=hf_token)
# Helper function to call Claude
def call_claude(prompt, model="claude-sonnet-4-20250514", max_tokens=4000, temperature=0.1):
client = anthropic_client
response = client.messages.create(
model=model,
max_tokens=max_tokens,
temperature=temperature,
messages=[
{"role": "user", "content": prompt}
]
)
return response.content[0].text
def allowed_files(filename):
return '.' in filename and filename.rsplit('.',1)[1].lower() in ALLOWED_EXTENSIONS
def chunk_text(text, chunk_size=1000, overlap=200):
"""Split text into overlapping chunks for better retrieval"""
chunks = []
start = 0
text_len = len(text)
while start < text_len:
end = min(start + chunk_size, text_len)
# Try to break at sentence end if possible
if end < text_len:
# Look for sentence endings within the last 100 characters
last_period = text.rfind('.', start + chunk_size - 100, end)
if last_period > start:
end = last_period + 1
chunk = text[start:end].strip()
if chunk:
chunks.append(chunk)
start = end - overlap if end < text_len else text_len
return chunks
def parse_markdown(file_path):
"""Parse markdown file and extract sections"""
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
# Split by headers and create structured chunks
sections = []
current_section = {"title": "", "content": ""}
lines = content.split('\n')
for line in lines:
# Check if line is a header
if line.startswith('#'):
# Save previous section if it has content
if current_section["content"].strip():
sections.append(current_section)
# Start new section
header_level = len(line) - len(line.lstrip('#'))
title = line.lstrip('# ').strip()
current_section = {
"title": title,
"content": "",
"level": header_level
}
else:
# Add to current section content
current_section["content"] += line + '\n'
# Add the last section
if current_section["content"].strip():
sections.append(current_section)
# Convert sections to text chunks
texts = []
metadata = []
for section in sections:
title = section.get("title", "")
content = section.get("content", "").strip()
level = section.get("level", 1)
if not content:
continue
# For large sections, chunk them further
if len(content) > 1500:
chunks = chunk_text(content, chunk_size=1000, overlap=200)
for i, chunk in enumerate(chunks):
full_text = f"# {title}\n\n{chunk}" if title else chunk
texts.append(full_text)
metadata.append({
"title": title,
"section": f"{title}_part_{i+1}" if title else f"section_part_{i+1}",
"level": level,
"content": chunk,
"type": "markdown_section"
})
else:
full_text = f"# {title}\n\n{content}" if title else content
texts.append(full_text)
metadata.append({
"title": title,
"section": title or "content",
"level": level,
"content": content,
"type": "markdown_section"
})
return texts, metadata
def parse_text_file(file_path):
"""Parse plain text file"""
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
# Split into chunks
chunks = chunk_text(content, chunk_size=1000, overlap=200)
texts = []
metadata = []
for i, chunk in enumerate(chunks):
texts.append(chunk)
metadata.append({
"chunk_id": i + 1,
"content": chunk,
"type": "text_chunk"
})
return texts, metadata
def build_index(input_file, text_key, output_prefix):
try:
print(f"Building index for file: {input_file}")
# Determine file type and parse accordingly
file_extension = input_file.lower().split('.')[-1]
if file_extension == 'json':
print(f"Processing JSON file with text key: {text_key}")
# Read and parse JSON file
with open(input_file, "r", encoding="utf-8") as f:
try:
data = json.load(f)
print(f"Successfully loaded JSON with {len(data)} items")
except json.JSONDecodeError as e:
print(f"JSON decode error: {str(e)}")
return False, f"Invalid JSON format: {str(e)}"
# Extract texts from JSON
texts = []
metadata = []
for i, item in enumerate(data):
if not isinstance(item, dict):
print(f"Item {i} is not a dictionary: {type(item)}")
continue
text_val = item.get(text_key, "")
if isinstance(text_val, str) and text_val.strip():
texts.append(text_val.strip())
metadata.append(item)
else:
print(f"Item {i} has invalid text value for key '{text_key}': {text_val}")
if not texts:
available_keys = list(data[0].keys()) if data else []
print(f"Available keys in first item: {available_keys}")
return False, f"No valid text entries found for key '{text_key}'. Available keys: {available_keys}"
elif file_extension == 'md':
print("Processing Markdown file")
texts, metadata = parse_markdown(input_file)
elif file_extension == 'txt':
print("Processing text file")
texts, metadata = parse_text_file(input_file)
else:
return False, f"Unsupported file type: {file_extension}"
print(f"Extracted {len(texts)} text entries")
if not texts:
return False, "No valid text entries found in file"
# Generate embeddings
print("Generating embeddings...")
try:
embeddings = embedder.encode(texts, convert_to_numpy=True, show_progress_bar=False)
print(f"Generated embeddings shape: {embeddings.shape}")
except Exception as e:
print(f"Error generating embeddings: {str(e)}")
return False, f"Error generating embeddings: {str(e)}"
# Create FAISS index
print("Creating FAISS index...")
try:
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
print(f"Created index with {index.ntotal} vectors")
except Exception as e:
print(f"Error creating FAISS index: {str(e)}")
return False, f"Error creating FAISS index: {str(e)}"
# Save files
try:
faiss_path = os.path.join(VECTOR_FOLDER, f"{output_prefix}.faiss")
texts_path = os.path.join(VECTOR_FOLDER, f"{output_prefix}_texts.json")
meta_path = os.path.join(VECTOR_FOLDER, f"{output_prefix}_meta.json")
faiss.write_index(index, faiss_path)
with open(texts_path, "w", encoding="utf-8") as f:
json.dump(texts, f, indent=2, ensure_ascii=False)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(metadata, f, indent=2, ensure_ascii=False)
print(f"Saved index files: {faiss_path}, {texts_path}, {meta_path}")
except Exception as e:
print(f"Error saving index files: {str(e)}")
return False, f"Error saving index files: {str(e)}"
return True, f"Indexed {len(texts)} entries successfully"
except Exception as e:
print(f"Unexpected error in build_index: {str(e)}")
return False, f"Unexpected error: {str(e)}"
def delete_index(prefix):
files = [
f"{prefix}.faiss",
f"{prefix}_texts.json",
f"{prefix}_meta.json"
]
for file in files:
path = os.path.join(VECTOR_FOLDER, file)
if os.path.exists(path):
os.remove(path)
def load_index(prefix):
index_path = os.path.join(VECTOR_FOLDER, f"{prefix}.faiss")
text_path = os.path.join(VECTOR_FOLDER, f"{prefix}_texts.json")
if not os.path.exists(index_path) or not os.path.exists(text_path):
return None, None
index = faiss.read_index(index_path)
with open(text_path) as f:
texts = json.load(f)
return index, texts
def retrieve(index, texts, query, top_k=3):
query_vec = embedder.encode([query], convert_to_numpy=True)
D, I = index.search(query_vec, top_k)
return [texts[i] for i in I[0]]
def run_search(query, index_name=None, top_k=3):
if not query:
return {"status":"error", "message":"Query is required"}
if index_name:
index,texts = load_index(index_name)
if not index:
return {"status":"error","message":f"Index '{index_name}' not found"}
results = retrieve(index,texts,query,top_k)
return {"status":"success", "results":results}
results = {}
for file in os.listdir(VECTOR_FOLDER):
if file.endswith('.faiss'):
prefix = file.replace(".faiss","")
index,texts = load_index(prefix)
if index:
results[prefix] = retrieve(index,texts,query,top_k)
return {"status":"success","results":results}
# Updated upload route that doesn't require text_key for non-JSON files
@app.route("/upload", methods=["POST"])
def upload_file():
try:
print("Upload request received")
if "file" not in request.files:
print("No file in request")
return jsonify({"status": "error", "message": "No file uploaded"}), 400
file = request.files["file"]
text_key = request.form.get("text_key", "text") # Default for JSON files
print(f"File received: {file.filename}")
print(f"Text key: {text_key}")
if file.filename == "":
print("Empty filename")
return jsonify({"status": "error", "message": "No selected file"}), 400
if not file or not allowed_files(file.filename):
print("Invalid file type or no file")
return jsonify({"status": "error", "message": "Invalid file type"}), 400
# Save file
filename = secure_filename(file.filename)
file_path = os.path.join(UPLOAD_FOLDER, filename)
try:
file.save(file_path)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"Error saving file: {str(e)}")
return jsonify({"status": "error", "message": f"Error saving file: {str(e)}"}), 500
# Build index
prefix = filename.split(".", 1)[0]
print(f"Building index with prefix: {prefix}")
try:
success, msg = build_index(file_path, text_key, prefix)
print(f"Index build result: {success}, message: {msg}")
except Exception as e:
print(f"Error building index: {str(e)}")
if os.path.exists(file_path):
os.remove(file_path)
return jsonify({"status": "error", "message": f"Error processing file: {str(e)}"}), 500
if not success:
print(f"Index building failed: {msg}")
if os.path.exists(file_path):
os.remove(file_path)
return jsonify({"status": "error", "message": msg}), 400
print(f"Upload successful: {msg}")
return jsonify({"status": "success", "message": msg, "file": filename}), 200
except Exception as e:
print(f"Unexpected error in upload: {str(e)}")
return jsonify({"status": "error", "message": f"Unexpected error: {str(e)}"}), 500
@app.route("/files",methods=["GET"])
def list_files():
files = os.listdir(UPLOAD_FOLDER)
return jsonify({"status":"success","files":files})
@app.route("/delete/<filename>", methods=["DELETE"])
def delete_file(filename):
file_path = os.path.join(UPLOAD_FOLDER,filename)
prefix = filename.rsplit(".",1)[0]
if os.path.exists(file_path):
os.remove(file_path)
delete_index(prefix)
return jsonify({"status":"success","message":f"{filename} and index deleted"})
else:
return jsonify({"status":"error","message":"File not found"}),400
@app.route("/search", methods=["POST"])
def search():
data = request.get_json()
query = data.get("query")
index_name = data.get("index_name")
top_k = int(data.get("top_k", 3))
result = run_search(query, index_name=index_name, top_k=top_k)
if result.get("status") == "error":
return jsonify(result), 400
prompt = f"""
You are a policy compliance adviser.
Reframe these policies into simple, clear sentences.
⚠️ STRICT INSTRUCTION: Output ONLY valid JSON in this format:
{{
"results": [
"policy 1 reformulated",
"policy 2 reformulated",
...
],
"status": "success"
}}
Policies for reference:
{result}
"""
raw_response = call_claude(prompt)
# --- Extract only JSON ---
try:
match = re.search(r"\{.*\}", raw_response, re.DOTALL)
if match:
policy_result = json.loads(match.group(0))
else:
policy_result = {"results": [], "status": "error", "message": "No JSON found"}
except Exception as e:
policy_result = {"results": [], "status": "error", "message": str(e)}
return jsonify(policy_result)
@app.route("/validate_instruction", methods=["POST"])
def validate_instruction():
data = request.get_json()
instruction = data.get("instruction")
index_name = data.get("index_name")
top_k = int(data.get("top_k", 3))
if not instruction:
return jsonify({"error": "Missing 'instruction' in request"}), 400
search_result = run_search(instruction, index_name=index_name, top_k=top_k)
if search_result.get("status") != "success":
return jsonify({"error":"Search Failed", "details":search_result}),500
context_results = search_result["results"]
prompt = f"""
You are a policy compliance checker and an instruction validator.
Evaluation Criteria
1. USER-FACING
a. The instruction must be directed at an end user in natural, human-centered language.
b. It must not read like a direct command to a system, developer, or internal process.
c. Prefer “you” or “you want to…” phrasing.
d. Avoid technical commands like “delete invoice 42,” “POST to API endpoint,” or “run SQL query.”
2. OUTPUT/GOAL ORIENTED (not procedural)
a. The instruction must specify the exact outcome or solution the task is designed to achieve, not how to do it step-by-step.
b. Avoid “spoon-feeding” the system with exact process steps (looping, filtering, database operations, etc.).
3. SINGLE, UNAMBIGUOUS OUTCOME
a. One overarching outcome – It expresses a single desired result instead of multiple separate actions.
b. User-centered – Written in second person (“you want to…”) so it’s directed at the end user.
c. Context-preserving – All relevant details (time, people, conditions, constraints) are included, but only as supporting context to achieve that one outcome.
d. Clarity & measurability – The goal is specific enough that you can verify when it has been achieved.
e. No competing intents – Even if there are multiple steps, they are framed as sub-parts of one larger objective, not as separate goals.
Example:
Not a single goal (ambiguous): “Fix the bulb, create an alert, and schedule automation.”
Single unambiguous goal: “You want to ensure reliable bulb management by fixing the malfunction, logging the alert acknowledged by David Navarro, and setting up a daily shutdown routine.”
4. POLICY COMPLIANT
a. The instruction must follow the given policy and not introduce extra constraints that could conflict.
b. If it violates policy or imposes unrelated restrictions, it fails.
Pass/Fail Decision Tree
Is it user-facing? → No = FAIL.
Is it goal-oriented (not process)? → No = FAIL.
Does it have one clear outcome? → No = FAIL.
Is it policy compliant? → No = FAIL.
If all 4 pass → OVERALL: PASS.
improved_instruction:
a. The improved instruction should tell how to frame sentence so that single outcome is achieved.
b. Do not omit any detils that is given in the instruction.
c. Your job is to modify the instruction in such a way that all the checks passes, and the details in instruction are also not lost also keep in mind that the instruction should be compact.
d. Also keep in mind all the compliances while modifying the instruction like user_facing,output_oriented, single_outcome, policy_compliant, overall.
Policy rules:
{context_results}
Good Examples:
You are James Shawn ([email protected]). On 2025-08-07, you want to add a 100,000 EUR subscription to the 'Emerging Markets Equity Fund' for investor Lawson-Edwards, assign it to yourself, and send them a subscription update email. You also want to create an invoice for half the subscription amount with due date 2025-08-31 and send an alert email for it.
Bad Examples:
You are Natasha Hickman (email: [email protected]), an administrator who needs to handle a comprehensive commitment management scenario for multiple investors. First, you need to verify your identity and then check if investor ID 15 has any existing commitments for fund ID 25. If no commitment exists, you need to create a new commitment for 500,000 GBP with a commitment date of September 10, 2025. Then, retrieve all commitments for this investor to verify the creation. Next, you need to update the commitment amount to 750,000 GBP due to increased investor interest. After the update, check the commitment fulfillment status and calculate the fulfillment percentage. Additionally, create another commitment for investor ID 30 to fund ID 25 for 300,000 GBP with a commitment date of September 15, 2025. Retrieve all commitments for fund ID 25 to see both commitments. However, investor ID 30 has decided to withdraw, so you need to delete their commitment. Finally, generate a holding report for fund ID 25 for investor ID 15 with a report date and export period end date of September 25, 2025, and send an email notification of type alert to investor ID 15 about their updated commitment status.
Instruction:
{instruction}
Decide if the instruction is VALID or INVALID according to the rules.
Respond ONLY in format given below:
{{
"user_facing": {{
"result": "PASS/FAIL",
"explanation": "..."
}},
"output_oriented": {{
"result": "PASS/FAIL",
"explanation": "..."
}},
"single_outcome": {{
"result": "PASS/FAIL",
"explanation": "..."
}},
"policy_compliant": {{
"result": "PASS/FAIL",
"explanation": "..."
}},
"overall": {{
"result": "PASS/FAIL",
"summary": "...",
"improved_instruction": ["...", "...", "..."]
}}
}}
"""
result_text = call_claude(prompt)
if result_text.startswith("```"):
result_text = result_text.strip("`").lstrip("json").strip()
try:
validation_data = json.loads(result_text)
except json.JSONDecodeError as e:
return jsonify({
"error": "Invalid JSON from model",
"raw_output": result_text,
"details": str(e)
}), 500
return jsonify({"Validation": validation_data})
if __name__ == "__main__":
import os
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=False)
|