Spaces:
Sleeping
Sleeping
| import contextlib | |
| import glob | |
| import inspect | |
| import logging | |
| import logging.config | |
| import math | |
| import os | |
| import platform | |
| import random | |
| import re | |
| import signal | |
| import sys | |
| import time | |
| import urllib | |
| from copy import deepcopy | |
| from datetime import datetime | |
| from itertools import repeat | |
| from multiprocessing.pool import ThreadPool | |
| from pathlib import Path | |
| from subprocess import check_output | |
| from tarfile import is_tarfile | |
| from typing import Optional | |
| from zipfile import ZipFile, is_zipfile | |
| import cv2 | |
| import IPython | |
| import numpy as np | |
| import pandas as pd | |
| import pkg_resources as pkg | |
| import torch | |
| import torchvision | |
| import yaml | |
| from utils import TryExcept, emojis | |
| from utils.downloads import gsutil_getsize | |
| from utils.metrics import box_iou, fitness | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[1] # YOLO root directory | |
| RANK = int(os.getenv('RANK', -1)) | |
| # Settings | |
| NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads | |
| DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory | |
| AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode | |
| VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode | |
| TQDM_BAR_FORMAT = '{l_bar}{bar:10}| {n_fmt}/{total_fmt} {elapsed}' # tqdm bar format | |
| FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf | |
| torch.set_printoptions(linewidth=320, precision=5, profile='long') | |
| np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |
| pd.options.display.max_columns = 10 | |
| cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) | |
| os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads | |
| os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy) | |
| def is_ascii(s=''): | |
| # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) | |
| s = str(s) # convert list, tuple, None, etc. to str | |
| return len(s.encode().decode('ascii', 'ignore')) == len(s) | |
| def is_chinese(s='人工智能'): | |
| # Is string composed of any Chinese characters? | |
| return bool(re.search('[\u4e00-\u9fff]', str(s))) | |
| def is_colab(): | |
| # Is environment a Google Colab instance? | |
| return 'google.colab' in sys.modules | |
| def is_notebook(): | |
| # Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace | |
| ipython_type = str(type(IPython.get_ipython())) | |
| return 'colab' in ipython_type or 'zmqshell' in ipython_type | |
| def is_kaggle(): | |
| # Is environment a Kaggle Notebook? | |
| return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' | |
| def is_docker() -> bool: | |
| """Check if the process runs inside a docker container.""" | |
| if Path("/.dockerenv").exists(): | |
| return True | |
| try: # check if docker is in control groups | |
| with open("/proc/self/cgroup") as file: | |
| return any("docker" in line for line in file) | |
| except OSError: | |
| return False | |
| def is_writeable(dir, test=False): | |
| # Return True if directory has write permissions, test opening a file with write permissions if test=True | |
| if not test: | |
| return os.access(dir, os.W_OK) # possible issues on Windows | |
| file = Path(dir) / 'tmp.txt' | |
| try: | |
| with open(file, 'w'): # open file with write permissions | |
| pass | |
| file.unlink() # remove file | |
| return True | |
| except OSError: | |
| return False | |
| LOGGING_NAME = "yolov5" | |
| def set_logging(name=LOGGING_NAME, verbose=True): | |
| # sets up logging for the given name | |
| rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings | |
| level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR | |
| logging.config.dictConfig({ | |
| "version": 1, | |
| "disable_existing_loggers": False, | |
| "formatters": { | |
| name: { | |
| "format": "%(message)s"}}, | |
| "handlers": { | |
| name: { | |
| "class": "logging.StreamHandler", | |
| "formatter": name, | |
| "level": level,}}, | |
| "loggers": { | |
| name: { | |
| "level": level, | |
| "handlers": [name], | |
| "propagate": False,}}}) | |
| set_logging(LOGGING_NAME) # run before defining LOGGER | |
| LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) | |
| if platform.system() == 'Windows': | |
| for fn in LOGGER.info, LOGGER.warning: | |
| setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging | |
| def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): | |
| # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. | |
| env = os.getenv(env_var) | |
| if env: | |
| path = Path(env) # use environment variable | |
| else: | |
| cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs | |
| path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir | |
| path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable | |
| path.mkdir(exist_ok=True) # make if required | |
| return path | |
| CONFIG_DIR = user_config_dir() # Ultralytics settings dir | |
| class Profile(contextlib.ContextDecorator): | |
| # YOLO Profile class. Usage: @Profile() decorator or 'with Profile():' context manager | |
| def __init__(self, t=0.0): | |
| self.t = t | |
| self.cuda = torch.cuda.is_available() | |
| def __enter__(self): | |
| self.start = self.time() | |
| return self | |
| def __exit__(self, type, value, traceback): | |
| self.dt = self.time() - self.start # delta-time | |
| self.t += self.dt # accumulate dt | |
| def time(self): | |
| if self.cuda: | |
| torch.cuda.synchronize() | |
| return time.time() | |
| class Timeout(contextlib.ContextDecorator): | |
| # YOLO Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager | |
| def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): | |
| self.seconds = int(seconds) | |
| self.timeout_message = timeout_msg | |
| self.suppress = bool(suppress_timeout_errors) | |
| def _timeout_handler(self, signum, frame): | |
| raise TimeoutError(self.timeout_message) | |
| def __enter__(self): | |
| if platform.system() != 'Windows': # not supported on Windows | |
| signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM | |
| signal.alarm(self.seconds) # start countdown for SIGALRM to be raised | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| if platform.system() != 'Windows': | |
| signal.alarm(0) # Cancel SIGALRM if it's scheduled | |
| if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError | |
| return True | |
| class WorkingDirectory(contextlib.ContextDecorator): | |
| # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager | |
| def __init__(self, new_dir): | |
| self.dir = new_dir # new dir | |
| self.cwd = Path.cwd().resolve() # current dir | |
| def __enter__(self): | |
| os.chdir(self.dir) | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| os.chdir(self.cwd) | |
| def methods(instance): | |
| # Get class/instance methods | |
| return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] | |
| def print_args(args: Optional[dict] = None, show_file=True, show_func=False): | |
| # Print function arguments (optional args dict) | |
| x = inspect.currentframe().f_back # previous frame | |
| file, _, func, _, _ = inspect.getframeinfo(x) | |
| if args is None: # get args automatically | |
| args, _, _, frm = inspect.getargvalues(x) | |
| args = {k: v for k, v in frm.items() if k in args} | |
| try: | |
| file = Path(file).resolve().relative_to(ROOT).with_suffix('') | |
| except ValueError: | |
| file = Path(file).stem | |
| s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '') | |
| LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items())) | |
| def init_seeds(seed=0, deterministic=False): | |
| # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe | |
| # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 | |
| if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213 | |
| torch.use_deterministic_algorithms(True) | |
| torch.backends.cudnn.deterministic = True | |
| os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' | |
| os.environ['PYTHONHASHSEED'] = str(seed) | |
| def intersect_dicts(da, db, exclude=()): | |
| # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values | |
| return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} | |
| def get_default_args(func): | |
| # Get func() default arguments | |
| signature = inspect.signature(func) | |
| return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} | |
| def get_latest_run(search_dir='.'): | |
| # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) | |
| last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) | |
| return max(last_list, key=os.path.getctime) if last_list else '' | |
| def file_age(path=__file__): | |
| # Return days since last file update | |
| dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta | |
| return dt.days # + dt.seconds / 86400 # fractional days | |
| def file_date(path=__file__): | |
| # Return human-readable file modification date, i.e. '2021-3-26' | |
| t = datetime.fromtimestamp(Path(path).stat().st_mtime) | |
| return f'{t.year}-{t.month}-{t.day}' | |
| def file_size(path): | |
| # Return file/dir size (MB) | |
| mb = 1 << 20 # bytes to MiB (1024 ** 2) | |
| path = Path(path) | |
| if path.is_file(): | |
| return path.stat().st_size / mb | |
| elif path.is_dir(): | |
| return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb | |
| else: | |
| return 0.0 | |
| def check_online(): | |
| # Check internet connectivity | |
| import socket | |
| def run_once(): | |
| # Check once | |
| try: | |
| socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility | |
| return True | |
| except OSError: | |
| return False | |
| return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues | |
| def git_describe(path=ROOT): # path must be a directory | |
| # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe | |
| try: | |
| assert (Path(path) / '.git').is_dir() | |
| return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] | |
| except Exception: | |
| return '' | |
| def check_git_status(repo='WongKinYiu/yolov9', branch='main'): | |
| # YOLO status check, recommend 'git pull' if code is out of date | |
| url = f'https://github.com/{repo}' | |
| msg = f', for updates see {url}' | |
| s = colorstr('github: ') # string | |
| assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg | |
| assert check_online(), s + 'skipping check (offline)' + msg | |
| splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode()) | |
| matches = [repo in s for s in splits] | |
| if any(matches): | |
| remote = splits[matches.index(True) - 1] | |
| else: | |
| remote = 'ultralytics' | |
| check_output(f'git remote add {remote} {url}', shell=True) | |
| check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch | |
| local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out | |
| n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True)) # commits behind | |
| if n > 0: | |
| pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}' | |
| s += f"⚠️ YOLO is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update." | |
| else: | |
| s += f'up to date with {url} ✅' | |
| LOGGER.info(s) | |
| def check_git_info(path='.'): | |
| # YOLO git info check, return {remote, branch, commit} | |
| check_requirements('gitpython') | |
| import git | |
| try: | |
| repo = git.Repo(path) | |
| remote = repo.remotes.origin.url.replace('.git', '') # i.e. 'https://github.com/WongKinYiu/yolov9' | |
| commit = repo.head.commit.hexsha # i.e. '3134699c73af83aac2a481435550b968d5792c0d' | |
| try: | |
| branch = repo.active_branch.name # i.e. 'main' | |
| except TypeError: # not on any branch | |
| branch = None # i.e. 'detached HEAD' state | |
| return {'remote': remote, 'branch': branch, 'commit': commit} | |
| except git.exc.InvalidGitRepositoryError: # path is not a git dir | |
| return {'remote': None, 'branch': None, 'commit': None} | |
| def check_python(minimum='3.7.0'): | |
| # Check current python version vs. required python version | |
| check_version(platform.python_version(), minimum, name='Python ', hard=True) | |
| def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): | |
| # Check version vs. required version | |
| current, minimum = (pkg.parse_version(x) for x in (current, minimum)) | |
| result = (current == minimum) if pinned else (current >= minimum) # bool | |
| s = f'WARNING ⚠️ {name}{minimum} is required by YOLO, but {name}{current} is currently installed' # string | |
| if hard: | |
| assert result, emojis(s) # assert min requirements met | |
| if verbose and not result: | |
| LOGGER.warning(s) | |
| return result | |
| def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''): | |
| # Check installed dependencies meet YOLO requirements (pass *.txt file or list of packages or single package str) | |
| prefix = colorstr('red', 'bold', 'requirements:') | |
| check_python() # check python version | |
| if isinstance(requirements, Path): # requirements.txt file | |
| file = requirements.resolve() | |
| assert file.exists(), f"{prefix} {file} not found, check failed." | |
| with file.open() as f: | |
| requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] | |
| elif isinstance(requirements, str): | |
| requirements = [requirements] | |
| s = '' | |
| n = 0 | |
| for r in requirements: | |
| try: | |
| pkg.require(r) | |
| except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met | |
| s += f'"{r}" ' | |
| n += 1 | |
| if s and install and AUTOINSTALL: # check environment variable | |
| LOGGER.info(f"{prefix} YOLO requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...") | |
| try: | |
| # assert check_online(), "AutoUpdate skipped (offline)" | |
| LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode()) | |
| source = file if 'file' in locals() else requirements | |
| s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ | |
| f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" | |
| LOGGER.info(s) | |
| except Exception as e: | |
| LOGGER.warning(f'{prefix} ❌ {e}') | |
| def check_img_size(imgsz, s=32, floor=0): | |
| # Verify image size is a multiple of stride s in each dimension | |
| if isinstance(imgsz, int): # integer i.e. img_size=640 | |
| new_size = max(make_divisible(imgsz, int(s)), floor) | |
| else: # list i.e. img_size=[640, 480] | |
| imgsz = list(imgsz) # convert to list if tuple | |
| new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] | |
| if new_size != imgsz: | |
| LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') | |
| return new_size | |
| def check_imshow(warn=False): | |
| # Check if environment supports image displays | |
| try: | |
| assert not is_notebook() | |
| assert not is_docker() | |
| cv2.imshow('test', np.zeros((1, 1, 3))) | |
| cv2.waitKey(1) | |
| cv2.destroyAllWindows() | |
| cv2.waitKey(1) | |
| return True | |
| except Exception as e: | |
| if warn: | |
| LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}') | |
| return False | |
| def check_suffix(file='yolo.pt', suffix=('.pt',), msg=''): | |
| # Check file(s) for acceptable suffix | |
| if file and suffix: | |
| if isinstance(suffix, str): | |
| suffix = [suffix] | |
| for f in file if isinstance(file, (list, tuple)) else [file]: | |
| s = Path(f).suffix.lower() # file suffix | |
| if len(s): | |
| assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" | |
| def check_yaml(file, suffix=('.yaml', '.yml')): | |
| # Search/download YAML file (if necessary) and return path, checking suffix | |
| return check_file(file, suffix) | |
| def check_file(file, suffix=''): | |
| # Search/download file (if necessary) and return path | |
| check_suffix(file, suffix) # optional | |
| file = str(file) # convert to str() | |
| if os.path.isfile(file) or not file: # exists | |
| return file | |
| elif file.startswith(('http:/', 'https:/')): # download | |
| url = file # warning: Pathlib turns :// -> :/ | |
| file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth | |
| if os.path.isfile(file): | |
| LOGGER.info(f'Found {url} locally at {file}') # file already exists | |
| else: | |
| LOGGER.info(f'Downloading {url} to {file}...') | |
| torch.hub.download_url_to_file(url, file) | |
| assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check | |
| return file | |
| elif file.startswith('clearml://'): # ClearML Dataset ID | |
| assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'." | |
| return file | |
| else: # search | |
| files = [] | |
| for d in 'data', 'models', 'utils': # search directories | |
| files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file | |
| assert len(files), f'File not found: {file}' # assert file was found | |
| assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique | |
| return files[0] # return file | |
| def check_font(font=FONT, progress=False): | |
| # Download font to CONFIG_DIR if necessary | |
| font = Path(font) | |
| file = CONFIG_DIR / font.name | |
| if not font.exists() and not file.exists(): | |
| url = f'https://ultralytics.com/assets/{font.name}' | |
| LOGGER.info(f'Downloading {url} to {file}...') | |
| torch.hub.download_url_to_file(url, str(file), progress=progress) | |
| def check_dataset(data, autodownload=True): | |
| # Download, check and/or unzip dataset if not found locally | |
| # Download (optional) | |
| extract_dir = '' | |
| if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): | |
| download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1) | |
| data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) | |
| extract_dir, autodownload = data.parent, False | |
| # Read yaml (optional) | |
| if isinstance(data, (str, Path)): | |
| data = yaml_load(data) # dictionary | |
| # Checks | |
| for k in 'train', 'val', 'names': | |
| assert k in data, emojis(f"data.yaml '{k}:' field missing ❌") | |
| if isinstance(data['names'], (list, tuple)): # old array format | |
| data['names'] = dict(enumerate(data['names'])) # convert to dict | |
| assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car' | |
| data['nc'] = len(data['names']) | |
| # Resolve paths | |
| path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' | |
| if not path.is_absolute(): | |
| path = (ROOT / path).resolve() | |
| data['path'] = path # download scripts | |
| for k in 'train', 'val', 'test': | |
| if data.get(k): # prepend path | |
| if isinstance(data[k], str): | |
| x = (path / data[k]).resolve() | |
| if not x.exists() and data[k].startswith('../'): | |
| x = (path / data[k][3:]).resolve() | |
| data[k] = str(x) | |
| else: | |
| data[k] = [str((path / x).resolve()) for x in data[k]] | |
| # Parse yaml | |
| train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) | |
| if val: | |
| val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path | |
| if not all(x.exists() for x in val): | |
| LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]) | |
| if not s or not autodownload: | |
| raise Exception('Dataset not found ❌') | |
| t = time.time() | |
| if s.startswith('http') and s.endswith('.zip'): # URL | |
| f = Path(s).name # filename | |
| LOGGER.info(f'Downloading {s} to {f}...') | |
| torch.hub.download_url_to_file(s, f) | |
| Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root | |
| unzip_file(f, path=DATASETS_DIR) # unzip | |
| Path(f).unlink() # remove zip | |
| r = None # success | |
| elif s.startswith('bash '): # bash script | |
| LOGGER.info(f'Running {s} ...') | |
| r = os.system(s) | |
| else: # python script | |
| r = exec(s, {'yaml': data}) # return None | |
| dt = f'({round(time.time() - t, 1)}s)' | |
| s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌" | |
| LOGGER.info(f"Dataset download {s}") | |
| check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts | |
| return data # dictionary | |
| def check_amp(model): | |
| # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation | |
| from models.common import AutoShape, DetectMultiBackend | |
| def amp_allclose(model, im): | |
| # All close FP32 vs AMP results | |
| m = AutoShape(model, verbose=False) # model | |
| a = m(im).xywhn[0] # FP32 inference | |
| m.amp = True | |
| b = m(im).xywhn[0] # AMP inference | |
| return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance | |
| prefix = colorstr('AMP: ') | |
| device = next(model.parameters()).device # get model device | |
| if device.type in ('cpu', 'mps'): | |
| return False # AMP only used on CUDA devices | |
| f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check | |
| im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3)) | |
| try: | |
| #assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolo.pt', device), im) | |
| LOGGER.info(f'{prefix}checks passed ✅') | |
| return True | |
| except Exception: | |
| help_url = 'https://github.com/ultralytics/yolov5/issues/7908' | |
| LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}') | |
| return False | |
| def yaml_load(file='data.yaml'): | |
| # Single-line safe yaml loading | |
| with open(file, errors='ignore') as f: | |
| return yaml.safe_load(f) | |
| def yaml_save(file='data.yaml', data={}): | |
| # Single-line safe yaml saving | |
| with open(file, 'w') as f: | |
| yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False) | |
| def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')): | |
| # Unzip a *.zip file to path/, excluding files containing strings in exclude list | |
| if path is None: | |
| path = Path(file).parent # default path | |
| with ZipFile(file) as zipObj: | |
| for f in zipObj.namelist(): # list all archived filenames in the zip | |
| if all(x not in f for x in exclude): | |
| zipObj.extract(f, path=path) | |
| def url2file(url): | |
| # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt | |
| url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ | |
| return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth | |
| def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3): | |
| # Multithreaded file download and unzip function, used in data.yaml for autodownload | |
| def download_one(url, dir): | |
| # Download 1 file | |
| success = True | |
| if os.path.isfile(url): | |
| f = Path(url) # filename | |
| else: # does not exist | |
| f = dir / Path(url).name | |
| LOGGER.info(f'Downloading {url} to {f}...') | |
| for i in range(retry + 1): | |
| if curl: | |
| s = 'sS' if threads > 1 else '' # silent | |
| r = os.system( | |
| f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue | |
| success = r == 0 | |
| else: | |
| torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download | |
| success = f.is_file() | |
| if success: | |
| break | |
| elif i < retry: | |
| LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...') | |
| else: | |
| LOGGER.warning(f'❌ Failed to download {url}...') | |
| if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)): | |
| LOGGER.info(f'Unzipping {f}...') | |
| if is_zipfile(f): | |
| unzip_file(f, dir) # unzip | |
| elif is_tarfile(f): | |
| os.system(f'tar xf {f} --directory {f.parent}') # unzip | |
| elif f.suffix == '.gz': | |
| os.system(f'tar xfz {f} --directory {f.parent}') # unzip | |
| if delete: | |
| f.unlink() # remove zip | |
| dir = Path(dir) | |
| dir.mkdir(parents=True, exist_ok=True) # make directory | |
| if threads > 1: | |
| pool = ThreadPool(threads) | |
| pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded | |
| pool.close() | |
| pool.join() | |
| else: | |
| for u in [url] if isinstance(url, (str, Path)) else url: | |
| download_one(u, dir) | |
| def make_divisible(x, divisor): | |
| # Returns nearest x divisible by divisor | |
| if isinstance(divisor, torch.Tensor): | |
| divisor = int(divisor.max()) # to int | |
| return math.ceil(x / divisor) * divisor | |
| def clean_str(s): | |
| # Cleans a string by replacing special characters with underscore _ | |
| return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) | |
| def one_cycle(y1=0.0, y2=1.0, steps=100): | |
| # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf | |
| return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 | |
| def one_flat_cycle(y1=0.0, y2=1.0, steps=100): | |
| # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf | |
| #return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 | |
| return lambda x: ((1 - math.cos((x - (steps // 2)) * math.pi / (steps // 2))) / 2) * (y2 - y1) + y1 if (x > (steps // 2)) else y1 | |
| def colorstr(*input): | |
| # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') | |
| *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string | |
| colors = { | |
| 'black': '\033[30m', # basic colors | |
| 'red': '\033[31m', | |
| 'green': '\033[32m', | |
| 'yellow': '\033[33m', | |
| 'blue': '\033[34m', | |
| 'magenta': '\033[35m', | |
| 'cyan': '\033[36m', | |
| 'white': '\033[37m', | |
| 'bright_black': '\033[90m', # bright colors | |
| 'bright_red': '\033[91m', | |
| 'bright_green': '\033[92m', | |
| 'bright_yellow': '\033[93m', | |
| 'bright_blue': '\033[94m', | |
| 'bright_magenta': '\033[95m', | |
| 'bright_cyan': '\033[96m', | |
| 'bright_white': '\033[97m', | |
| 'end': '\033[0m', # misc | |
| 'bold': '\033[1m', | |
| 'underline': '\033[4m'} | |
| return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |
| def labels_to_class_weights(labels, nc=80): | |
| # Get class weights (inverse frequency) from training labels | |
| if labels[0] is None: # no labels loaded | |
| return torch.Tensor() | |
| labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO | |
| classes = labels[:, 0].astype(int) # labels = [class xywh] | |
| weights = np.bincount(classes, minlength=nc) # occurrences per class | |
| # Prepend gridpoint count (for uCE training) | |
| # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image | |
| # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start | |
| weights[weights == 0] = 1 # replace empty bins with 1 | |
| weights = 1 / weights # number of targets per class | |
| weights /= weights.sum() # normalize | |
| return torch.from_numpy(weights).float() | |
| def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): | |
| # Produces image weights based on class_weights and image contents | |
| # Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample | |
| class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels]) | |
| return (class_weights.reshape(1, nc) * class_counts).sum(1) | |
| def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) | |
| # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ | |
| # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') | |
| # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') | |
| # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco | |
| # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet | |
| return [ | |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, | |
| 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
| 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] | |
| def xyxy2xywh(x): | |
| # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center | |
| y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center | |
| y[..., 2] = x[..., 2] - x[..., 0] # width | |
| y[..., 3] = x[..., 3] - x[..., 1] # height | |
| return y | |
| def xywh2xyxy(x): | |
| # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x | |
| y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y | |
| y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x | |
| y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y | |
| return y | |
| def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): | |
| # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x | |
| y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y | |
| y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x | |
| y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y | |
| return y | |
| def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): | |
| # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right | |
| if clip: | |
| clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center | |
| y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center | |
| y[..., 2] = (x[..., 2] - x[..., 0]) / w # width | |
| y[..., 3] = (x[..., 3] - x[..., 1]) / h # height | |
| return y | |
| def xyn2xy(x, w=640, h=640, padw=0, padh=0): | |
| # Convert normalized segments into pixel segments, shape (n,2) | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = w * x[..., 0] + padw # top left x | |
| y[..., 1] = h * x[..., 1] + padh # top left y | |
| return y | |
| def segment2box(segment, width=640, height=640): | |
| # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) | |
| x, y = segment.T # segment xy | |
| inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) | |
| x, y, = x[inside], y[inside] | |
| return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy | |
| def segments2boxes(segments): | |
| # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) | |
| boxes = [] | |
| for s in segments: | |
| x, y = s.T # segment xy | |
| boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy | |
| return xyxy2xywh(np.array(boxes)) # cls, xywh | |
| def resample_segments(segments, n=1000): | |
| # Up-sample an (n,2) segment | |
| for i, s in enumerate(segments): | |
| s = np.concatenate((s, s[0:1, :]), axis=0) | |
| x = np.linspace(0, len(s) - 1, n) | |
| xp = np.arange(len(s)) | |
| segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy | |
| return segments | |
| def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None): | |
| # Rescale boxes (xyxy) from img1_shape to img0_shape | |
| if ratio_pad is None: # calculate from img0_shape | |
| gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
| pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
| else: | |
| gain = ratio_pad[0][0] | |
| pad = ratio_pad[1] | |
| boxes[:, [0, 2]] -= pad[0] # x padding | |
| boxes[:, [1, 3]] -= pad[1] # y padding | |
| boxes[:, :4] /= gain | |
| clip_boxes(boxes, img0_shape) | |
| return boxes | |
| def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False): | |
| # Rescale coords (xyxy) from img1_shape to img0_shape | |
| if ratio_pad is None: # calculate from img0_shape | |
| gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
| pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
| else: | |
| gain = ratio_pad[0][0] | |
| pad = ratio_pad[1] | |
| segments[:, 0] -= pad[0] # x padding | |
| segments[:, 1] -= pad[1] # y padding | |
| segments /= gain | |
| clip_segments(segments, img0_shape) | |
| if normalize: | |
| segments[:, 0] /= img0_shape[1] # width | |
| segments[:, 1] /= img0_shape[0] # height | |
| return segments | |
| def clip_boxes(boxes, shape): | |
| # Clip boxes (xyxy) to image shape (height, width) | |
| if isinstance(boxes, torch.Tensor): # faster individually | |
| boxes[:, 0].clamp_(0, shape[1]) # x1 | |
| boxes[:, 1].clamp_(0, shape[0]) # y1 | |
| boxes[:, 2].clamp_(0, shape[1]) # x2 | |
| boxes[:, 3].clamp_(0, shape[0]) # y2 | |
| else: # np.array (faster grouped) | |
| boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 | |
| boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 | |
| def clip_segments(segments, shape): | |
| # Clip segments (xy1,xy2,...) to image shape (height, width) | |
| if isinstance(segments, torch.Tensor): # faster individually | |
| segments[:, 0].clamp_(0, shape[1]) # x | |
| segments[:, 1].clamp_(0, shape[0]) # y | |
| else: # np.array (faster grouped) | |
| segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x | |
| segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y | |
| def non_max_suppression( | |
| prediction, | |
| conf_thres=0.25, | |
| iou_thres=0.45, | |
| classes=None, | |
| agnostic=False, | |
| multi_label=False, | |
| labels=(), | |
| max_det=300, | |
| nm=0, # number of masks | |
| ): | |
| """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections | |
| Returns: | |
| list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |
| """ | |
| if isinstance(prediction, (list, tuple)): # YOLO model in validation model, output = (inference_out, loss_out) | |
| prediction = prediction[0][1] # select only inference output | |
| device = prediction.device | |
| mps = 'mps' in device.type # Apple MPS | |
| if mps: # MPS not fully supported yet, convert tensors to CPU before NMS | |
| prediction = prediction.cpu() | |
| bs = prediction.shape[0] # batch size | |
| nc = prediction.shape[1] - nm - 4 # number of classes | |
| mi = 4 + nc # mask start index | |
| xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates | |
| # Checks | |
| assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' | |
| assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' | |
| # Settings | |
| # min_wh = 2 # (pixels) minimum box width and height | |
| max_wh = 7680 # (pixels) maximum box width and height | |
| max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() | |
| time_limit = 2.5 + 0.05 * bs # seconds to quit after | |
| redundant = True # require redundant detections | |
| multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) | |
| merge = False # use merge-NMS | |
| t = time.time() | |
| output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs | |
| for xi, x in enumerate(prediction): # image index, image inference | |
| # Apply constraints | |
| # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
| x = x.T[xc[xi]] # confidence | |
| # Cat apriori labels if autolabelling | |
| if labels and len(labels[xi]): | |
| lb = labels[xi] | |
| v = torch.zeros((len(lb), nc + nm + 5), device=x.device) | |
| v[:, :4] = lb[:, 1:5] # box | |
| v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls | |
| x = torch.cat((x, v), 0) | |
| # If none remain process next image | |
| if not x.shape[0]: | |
| continue | |
| # Detections matrix nx6 (xyxy, conf, cls) | |
| box, cls, mask = x.split((4, nc, nm), 1) | |
| box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2) | |
| if multi_label: | |
| i, j = (cls > conf_thres).nonzero(as_tuple=False).T | |
| x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1) | |
| else: # best class only | |
| conf, j = cls.max(1, keepdim=True) | |
| x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] | |
| # Filter by class | |
| if classes is not None: | |
| x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
| # Apply finite constraint | |
| # if not torch.isfinite(x).all(): | |
| # x = x[torch.isfinite(x).all(1)] | |
| # Check shape | |
| n = x.shape[0] # number of boxes | |
| if not n: # no boxes | |
| continue | |
| elif n > max_nms: # excess boxes | |
| x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence | |
| else: | |
| x = x[x[:, 4].argsort(descending=True)] # sort by confidence | |
| # Batched NMS | |
| c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |
| boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
| i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |
| if i.shape[0] > max_det: # limit detections | |
| i = i[:max_det] | |
| if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
| # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
| iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
| weights = iou * scores[None] # box weights | |
| x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
| if redundant: | |
| i = i[iou.sum(1) > 1] # require redundancy | |
| output[xi] = x[i] | |
| if mps: | |
| output[xi] = output[xi].to(device) | |
| if (time.time() - t) > time_limit: | |
| LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') | |
| break # time limit exceeded | |
| return output | |
| def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() | |
| # Strip optimizer from 'f' to finalize training, optionally save as 's' | |
| x = torch.load(f, map_location=torch.device('cpu')) | |
| if x.get('ema'): | |
| x['model'] = x['ema'] # replace model with ema | |
| for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys | |
| x[k] = None | |
| x['epoch'] = -1 | |
| x['model'].half() # to FP16 | |
| for p in x['model'].parameters(): | |
| p.requires_grad = False | |
| torch.save(x, s or f) | |
| mb = os.path.getsize(s or f) / 1E6 # filesize | |
| LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") | |
| def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')): | |
| evolve_csv = save_dir / 'evolve.csv' | |
| evolve_yaml = save_dir / 'hyp_evolve.yaml' | |
| keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps] | |
| keys = tuple(x.strip() for x in keys) | |
| vals = results + tuple(hyp.values()) | |
| n = len(keys) | |
| # Download (optional) | |
| if bucket: | |
| url = f'gs://{bucket}/evolve.csv' | |
| if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0): | |
| os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local | |
| # Log to evolve.csv | |
| s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header | |
| with open(evolve_csv, 'a') as f: | |
| f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') | |
| # Save yaml | |
| with open(evolve_yaml, 'w') as f: | |
| data = pd.read_csv(evolve_csv) | |
| data = data.rename(columns=lambda x: x.strip()) # strip keys | |
| i = np.argmax(fitness(data.values[:, :4])) # | |
| generations = len(data) | |
| f.write('# YOLO Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' + | |
| f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + | |
| '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') | |
| yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False) | |
| # Print to screen | |
| LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix + | |
| ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}' | |
| for x in vals) + '\n\n') | |
| if bucket: | |
| os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload | |
| def apply_classifier(x, model, img, im0): | |
| # Apply a second stage classifier to YOLO outputs | |
| # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() | |
| im0 = [im0] if isinstance(im0, np.ndarray) else im0 | |
| for i, d in enumerate(x): # per image | |
| if d is not None and len(d): | |
| d = d.clone() | |
| # Reshape and pad cutouts | |
| b = xyxy2xywh(d[:, :4]) # boxes | |
| b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square | |
| b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad | |
| d[:, :4] = xywh2xyxy(b).long() | |
| # Rescale boxes from img_size to im0 size | |
| scale_boxes(img.shape[2:], d[:, :4], im0[i].shape) | |
| # Classes | |
| pred_cls1 = d[:, 5].long() | |
| ims = [] | |
| for a in d: | |
| cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] | |
| im = cv2.resize(cutout, (224, 224)) # BGR | |
| im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
| im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 | |
| im /= 255 # 0 - 255 to 0.0 - 1.0 | |
| ims.append(im) | |
| pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction | |
| x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections | |
| return x | |
| def increment_path(path, exist_ok=False, sep='', mkdir=False): | |
| # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. | |
| path = Path(path) # os-agnostic | |
| if path.exists() and not exist_ok: | |
| path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') | |
| # Method 1 | |
| for n in range(2, 9999): | |
| p = f'{path}{sep}{n}{suffix}' # increment path | |
| if not os.path.exists(p): # | |
| break | |
| path = Path(p) | |
| # Method 2 (deprecated) | |
| # dirs = glob.glob(f"{path}{sep}*") # similar paths | |
| # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs] | |
| # i = [int(m.groups()[0]) for m in matches if m] # indices | |
| # n = max(i) + 1 if i else 2 # increment number | |
| # path = Path(f"{path}{sep}{n}{suffix}") # increment path | |
| if mkdir: | |
| path.mkdir(parents=True, exist_ok=True) # make directory | |
| return path | |
| # OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------ | |
| imshow_ = cv2.imshow # copy to avoid recursion errors | |
| def imread(path, flags=cv2.IMREAD_COLOR): | |
| return cv2.imdecode(np.fromfile(path, np.uint8), flags) | |
| def imwrite(path, im): | |
| try: | |
| cv2.imencode(Path(path).suffix, im)[1].tofile(path) | |
| return True | |
| except Exception: | |
| return False | |
| def imshow(path, im): | |
| imshow_(path.encode('unicode_escape').decode(), im) | |
| cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine | |
| # Variables ------------------------------------------------------------------------------------------------------------ | |