Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # Load the sentiment analysis model | |
| model_name = "poom-sci/WangchanBERTa-finetuned-sentiment" | |
| sentiment_analyzer = pipeline('sentiment-analysis', model=model_name) | |
| # Streamlit app | |
| st.title("Thai Sentiment Analysis App") | |
| # Input text | |
| text_input = st.text_area("Enter Thai text for sentiment analysis", "ขอความเห็นหน่อย... ") | |
| # Button to trigger analysis | |
| if st.button("Analyze Sentiment"): | |
| # Analyze sentiment using the model | |
| results = sentiment_analyzer([text_input]) | |
| # Extract sentiment and score | |
| sentiment = results[0]['label'] | |
| score = results[0]['score'] | |
| # Display result as progress bars | |
| st.subheader("Sentiment Analysis Result:") | |
| if sentiment == 'pos': | |
| st.success(f"Positive Sentiment (Score: {score:.2f})") | |
| st.progress(score) | |
| elif sentiment == 'neg': | |
| st.error(f"Negative Sentiment (Score: {score:.2f})") | |
| st.progress(score) | |
| else: | |
| st.warning(f"Neutral Sentiment (Score: {score:.2f})") | |
| st.progress(score) | |