Spaces:
Sleeping
Sleeping
| import numpy as np | |
| class DataTransformer: | |
| def __init__(self, data): | |
| self.data = np.asarray(data) | |
| self.sorted_data = np.sort(self.data) | |
| self.n = len(self.sorted_data) | |
| self.ecdf = np.arange(1, self.n + 1) / self.n | |
| def mapping_function(self, x): | |
| x = np.asarray(x) | |
| return np.interp(x, self.sorted_data, self.ecdf, left=0, right=1) | |
| def smooth_confidence_scores(target_data, prior_distribution=None): | |
| # if prior_distribution is None: | |
| # prior_distribution = target_data | |
| # transformer = DataTransformer(prior_distribution) | |
| # return transformer.mapping_function(target_data) | |
| return target_data[0] | |