Spaces:
Sleeping
Sleeping
Commit
·
f269277
1
Parent(s):
32371f9
Create CLI and Gradio versions
Browse files- evaluate.py +17 -27
- evaluate_demo.py +99 -0
evaluate.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
|
|
|
| 1 |
import pickle
|
| 2 |
import warnings
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
-
import gradio as gr
|
| 6 |
-
|
| 7 |
from neus_v.smooth_scoring import smooth_confidence_scores
|
| 8 |
from neus_v.utils import clear_gpu_memory
|
| 9 |
from neus_v.veval.eval import evaluate_video_with_sequence_of_images
|
|
@@ -16,21 +15,21 @@ warnings.filterwarnings(
|
|
| 16 |
)
|
| 17 |
|
| 18 |
# Paths and parameters
|
| 19 |
-
# WEIGHT_PATH = Path("/opt/mars/mnt/model_weights")
|
| 20 |
WEIGHT_PATH = Path("/nas/mars/model_weights/")
|
| 21 |
pickle_path = WEIGHT_PATH / "distributions.pkl"
|
| 22 |
num_of_frame_in_sequence = 3
|
| 23 |
model = "InternVL2-8B"
|
| 24 |
device = 7
|
|
|
|
| 25 |
# Load the vision-language model
|
| 26 |
vision_language_model = InternVL(model_name=model, device=device)
|
|
|
|
| 27 |
# Load distributions
|
| 28 |
with open(pickle_path, "rb") as f:
|
| 29 |
distributions = pickle.load(f)
|
| 30 |
all_dimension_data = distributions.get(model).get("all_dimension")
|
| 31 |
|
| 32 |
|
| 33 |
-
# TODO: Make paths better for public release
|
| 34 |
def process_video(video_path, propositions, tl):
|
| 35 |
"""Process the video and compute the score_on_all."""
|
| 36 |
proposition_set = parse_proposition_set(propositions.split(","))
|
|
@@ -63,36 +62,27 @@ def process_video(video_path, propositions, tl):
|
|
| 63 |
return f"Error: {str(e)}"
|
| 64 |
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"""
|
| 69 |
-
|
|
|
|
| 70 |
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
#
|
|
|
|
|
|
|
| 74 |
example_video_path_1 = "/nas/mars/dataset/teaser/A_storm_bursts_in_with_intermittent_lightning_and_causes_flooding_and_large_waves_crash_in.mp4"
|
| 75 |
example_video_path_2 = "/nas/mars/dataset/teaser/The ocean waves gently lapping at the shore, until a storm bursts in, and then lightning flashes across the sky.mp4"
|
| 76 |
example_propositions = "waves lapping,ocean shore,storm bursts in,lightning on the sky"
|
| 77 |
example_tl = '("waves_lapping" & "ocean_shore") U ("storm_bursts_in" U "lightning_on_the_sky")'
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
gr.Textbox(label="List of Propositions (comma-separated)"),
|
| 84 |
-
gr.Textbox(label="Temporal Logic Specification"),
|
| 85 |
-
],
|
| 86 |
-
outputs=gr.Textbox(label="Score on All"),
|
| 87 |
-
title="Video Evaluation with Temporal Logic",
|
| 88 |
-
description="Upload a video and provide propositions and temporal logic to evaluate the score_on_all.",
|
| 89 |
-
examples=[
|
| 90 |
-
[example_video_path_1, example_propositions, example_tl],
|
| 91 |
-
[example_video_path_2, example_propositions, example_tl],
|
| 92 |
-
],
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
demo.launch(allowed_paths=["/nas/mars/dataset/teaser"])
|
| 96 |
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
import pickle
|
| 3 |
import warnings
|
| 4 |
from pathlib import Path
|
| 5 |
|
|
|
|
|
|
|
| 6 |
from neus_v.smooth_scoring import smooth_confidence_scores
|
| 7 |
from neus_v.utils import clear_gpu_memory
|
| 8 |
from neus_v.veval.eval import evaluate_video_with_sequence_of_images
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# Paths and parameters
|
|
|
|
| 18 |
WEIGHT_PATH = Path("/nas/mars/model_weights/")
|
| 19 |
pickle_path = WEIGHT_PATH / "distributions.pkl"
|
| 20 |
num_of_frame_in_sequence = 3
|
| 21 |
model = "InternVL2-8B"
|
| 22 |
device = 7
|
| 23 |
+
|
| 24 |
# Load the vision-language model
|
| 25 |
vision_language_model = InternVL(model_name=model, device=device)
|
| 26 |
+
|
| 27 |
# Load distributions
|
| 28 |
with open(pickle_path, "rb") as f:
|
| 29 |
distributions = pickle.load(f)
|
| 30 |
all_dimension_data = distributions.get(model).get("all_dimension")
|
| 31 |
|
| 32 |
|
|
|
|
| 33 |
def process_video(video_path, propositions, tl):
|
| 34 |
"""Process the video and compute the score_on_all."""
|
| 35 |
proposition_set = parse_proposition_set(propositions.split(","))
|
|
|
|
| 62 |
return f"Error: {str(e)}"
|
| 63 |
|
| 64 |
|
| 65 |
+
def main():
|
| 66 |
+
# parser = argparse.ArgumentParser(description="Process a video using temporal logic evaluation.")
|
| 67 |
+
# parser.add_argument("video", type=str, help="Path to the video file.")
|
| 68 |
+
# parser.add_argument("propositions", type=str, help="List of propositions (comma-separated).")
|
| 69 |
+
# parser.add_argument("tl", type=str, help="Temporal logic specification.")
|
| 70 |
|
| 71 |
+
# args = parser.parse_args()
|
| 72 |
|
| 73 |
+
# score = process_video(args.video, args.propositions, args.tl)
|
| 74 |
+
# print(f"Score on All: {score}")
|
| 75 |
+
|
| 76 |
+
# Example usage
|
| 77 |
example_video_path_1 = "/nas/mars/dataset/teaser/A_storm_bursts_in_with_intermittent_lightning_and_causes_flooding_and_large_waves_crash_in.mp4"
|
| 78 |
example_video_path_2 = "/nas/mars/dataset/teaser/The ocean waves gently lapping at the shore, until a storm bursts in, and then lightning flashes across the sky.mp4"
|
| 79 |
example_propositions = "waves lapping,ocean shore,storm bursts in,lightning on the sky"
|
| 80 |
example_tl = '("waves_lapping" & "ocean_shore") U ("storm_bursts_in" U "lightning_on_the_sky")'
|
| 81 |
|
| 82 |
+
print("Example 1:")
|
| 83 |
+
print(f"Score: {process_video(example_video_path_1, example_propositions, example_tl)}")
|
| 84 |
+
print("Example 2:")
|
| 85 |
+
print(f"Score: {process_video(example_video_path_2, example_propositions, example_tl)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
|
| 88 |
if __name__ == "__main__":
|
evaluate_demo.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import warnings
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from neus_v.smooth_scoring import smooth_confidence_scores
|
| 8 |
+
from neus_v.utils import clear_gpu_memory
|
| 9 |
+
from neus_v.veval.eval import evaluate_video_with_sequence_of_images
|
| 10 |
+
from neus_v.veval.parse import parse_proposition_set, parse_tl_specification
|
| 11 |
+
from neus_v.vlm.internvl import InternVL
|
| 12 |
+
|
| 13 |
+
# Suppress specific warnings
|
| 14 |
+
warnings.filterwarnings(
|
| 15 |
+
"ignore", category=DeprecationWarning, message="Conversion of an array with ndim > 0 to a scalar is deprecated"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Paths and parameters
|
| 19 |
+
# WEIGHT_PATH = Path("/opt/mars/mnt/model_weights")
|
| 20 |
+
WEIGHT_PATH = Path("/nas/mars/model_weights/")
|
| 21 |
+
pickle_path = WEIGHT_PATH / "distributions.pkl"
|
| 22 |
+
num_of_frame_in_sequence = 3
|
| 23 |
+
model = "InternVL2-8B"
|
| 24 |
+
device = 7
|
| 25 |
+
# Load the vision-language model
|
| 26 |
+
vision_language_model = InternVL(model_name=model, device=device)
|
| 27 |
+
# Load distributions
|
| 28 |
+
with open(pickle_path, "rb") as f:
|
| 29 |
+
distributions = pickle.load(f)
|
| 30 |
+
all_dimension_data = distributions.get(model).get("all_dimension")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# TODO: Make paths better for public release
|
| 34 |
+
def process_video(video_path, propositions, tl):
|
| 35 |
+
"""Process the video and compute the score_on_all."""
|
| 36 |
+
proposition_set = parse_proposition_set(propositions.split(","))
|
| 37 |
+
tl_spec = parse_tl_specification(tl)
|
| 38 |
+
threshold = 0.349
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
result = evaluate_video_with_sequence_of_images(
|
| 42 |
+
vision_language_model=vision_language_model,
|
| 43 |
+
confidence_as_token_probability=True,
|
| 44 |
+
video_path=video_path,
|
| 45 |
+
proposition_set=proposition_set,
|
| 46 |
+
tl_spec=tl_spec,
|
| 47 |
+
parallel_inference=False,
|
| 48 |
+
num_of_frame_in_sequence=num_of_frame_in_sequence,
|
| 49 |
+
threshold=threshold,
|
| 50 |
+
)
|
| 51 |
+
probability = result.get("probability")
|
| 52 |
+
score_on_all = float(
|
| 53 |
+
smooth_confidence_scores(
|
| 54 |
+
target_data=[probability],
|
| 55 |
+
prior_distribution=all_dimension_data,
|
| 56 |
+
)
|
| 57 |
+
)
|
| 58 |
+
clear_gpu_memory()
|
| 59 |
+
return score_on_all
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
clear_gpu_memory()
|
| 63 |
+
return f"Error: {str(e)}"
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Gradio interface
|
| 67 |
+
def demo_interface(video, propositions, tl):
|
| 68 |
+
"""Wrapper for the Gradio interface."""
|
| 69 |
+
return process_video(video, propositions, tl)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def main():
|
| 73 |
+
# Example data from the original script
|
| 74 |
+
example_video_path_1 = "/nas/mars/dataset/teaser/A_storm_bursts_in_with_intermittent_lightning_and_causes_flooding_and_large_waves_crash_in.mp4"
|
| 75 |
+
example_video_path_2 = "/nas/mars/dataset/teaser/The ocean waves gently lapping at the shore, until a storm bursts in, and then lightning flashes across the sky.mp4"
|
| 76 |
+
example_propositions = "waves lapping,ocean shore,storm bursts in,lightning on the sky"
|
| 77 |
+
example_tl = '("waves_lapping" & "ocean_shore") U ("storm_bursts_in" U "lightning_on_the_sky")'
|
| 78 |
+
|
| 79 |
+
demo = gr.Interface(
|
| 80 |
+
fn=demo_interface,
|
| 81 |
+
inputs=[
|
| 82 |
+
gr.Video(label="Upload Video"),
|
| 83 |
+
gr.Textbox(label="List of Propositions (comma-separated)"),
|
| 84 |
+
gr.Textbox(label="Temporal Logic Specification"),
|
| 85 |
+
],
|
| 86 |
+
outputs=gr.Textbox(label="Score on All"),
|
| 87 |
+
title="Video Evaluation with Temporal Logic",
|
| 88 |
+
description="Upload a video and provide propositions and temporal logic to evaluate the score_on_all.",
|
| 89 |
+
examples=[
|
| 90 |
+
[example_video_path_1, example_propositions, example_tl],
|
| 91 |
+
[example_video_path_2, example_propositions, example_tl],
|
| 92 |
+
],
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
demo.launch(allowed_paths=["/nas/mars/dataset/teaser"])
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
if __name__ == "__main__":
|
| 99 |
+
main()
|