Syzygianinfern0 commited on
Commit
f9eab93
·
1 Parent(s): 98b8ce5

Transfer changes from neuse

Browse files
Files changed (3) hide show
  1. evaluate_demo.py +0 -1
  2. neus_v/veval/eval.py +3 -3
  3. vllm_serve.sh +2 -2
evaluate_demo.py CHANGED
@@ -22,7 +22,6 @@ WEIGHT_PATH = Path("./assets/")
22
  pickle_path = WEIGHT_PATH / "distributions.pkl"
23
  num_of_frame_in_sequence = 3
24
  model = "InternVL2-8B"
25
- device = 0
26
  # Load the vision-language model
27
  vision_language_model = VLLMClient(api_base="http://localhost:8000/v1", model="OpenGVLab/InternVL2_5-8B")
28
  # Load distributions
 
22
  pickle_path = WEIGHT_PATH / "distributions.pkl"
23
  num_of_frame_in_sequence = 3
24
  model = "InternVL2-8B"
 
25
  # Load the vision-language model
26
  vision_language_model = VLLMClient(api_base="http://localhost:8000/v1", model="OpenGVLab/InternVL2_5-8B")
27
  # Load distributions
neus_v/veval/eval.py CHANGED
@@ -226,17 +226,17 @@ def evaluate_video_with_sequence_of_images(
226
  for proposition, detected_object in object_of_interest.items():
227
  proposition_probability_record[proposition].append(detected_object.probability)
228
 
229
- video_automaton.add_terminal_state(add_with_terminal_label=True)
230
  sys.stdout.write("\n") # Move to the next line after processing all frames
231
  result = model_checker.check_automaton(
232
  states=video_automaton.states,
233
  transitions=video_automaton.transitions,
234
  model_type="dtmc",
235
- use_filter=True,
236
  )
237
  output_log["specification"] = tl_spec
238
  output_log["propositions"] = proposition_set
239
- output_log["probability"] = round(float(str(result)), 6)
240
  output_log["min_probability"] = round(float(str(result.min)), 6)
241
  output_log["max_probability"] = round(float(str(result.max)), 6)
242
  for (
 
226
  for proposition, detected_object in object_of_interest.items():
227
  proposition_probability_record[proposition].append(detected_object.probability)
228
 
229
+ video_automaton.add_terminal_state(add_with_terminal_label=False)
230
  sys.stdout.write("\n") # Move to the next line after processing all frames
231
  result = model_checker.check_automaton(
232
  states=video_automaton.states,
233
  transitions=video_automaton.transitions,
234
  model_type="dtmc",
235
+ use_filter=False,
236
  )
237
  output_log["specification"] = tl_spec
238
  output_log["propositions"] = proposition_set
239
+ output_log["probability"] = round(float(str(result.at(0))), 6)
240
  output_log["min_probability"] = round(float(str(result.min)), 6)
241
  output_log["max_probability"] = round(float(str(result.max)), 6)
242
  for (
vllm_serve.sh CHANGED
@@ -10,5 +10,5 @@ vllm serve $MODEL \
10
  --port $PORT \
11
  --trust-remote-code \
12
  --limit-mm-per-prompt image=4 \
13
- --enforce-eager \
14
- --max-model-len 16384
 
10
  --port $PORT \
11
  --trust-remote-code \
12
  --limit-mm-per-prompt image=4 \
13
+ # --enforce-eager \
14
+ # --max-model-len 16384