Spaces:
Sleeping
Sleeping
| from typing import Tuple | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| try: | |
| from flash_attn_interface import flash_attn_func # type: ignore[import] | |
| except ImportError: | |
| # Fallback to FlashAttention 2 | |
| from flash_attn import flash_attn_func # type: ignore[import] | |
| from models.common import trunc_normal_init_ | |
| CosSin = Tuple[torch.Tensor, torch.Tensor] | |
| def _find_multiple(a, b): | |
| return (-(a // -b)) * b | |
| def rotate_half(x: torch.Tensor): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor): | |
| # q, k: [bs, seq_len, num_heads, head_dim] | |
| # cos, sin: [seq_len, head_dim] | |
| orig_dtype = q.dtype | |
| q = q.to(cos.dtype) | |
| k = k.to(cos.dtype) | |
| q_embed = (q * cos.unsqueeze(-2)) + (rotate_half(q) * sin.unsqueeze(-2)) | |
| k_embed = (k * cos.unsqueeze(-2)) + (rotate_half(k) * sin.unsqueeze(-2)) | |
| return q_embed.to(orig_dtype), k_embed.to(orig_dtype) | |
| class CastedLinear(nn.Module): | |
| def __init__(self, | |
| in_features: int, | |
| out_features: int, | |
| bias: bool): | |
| super().__init__() | |
| # Truncated LeCun normal init | |
| self.weight = nn.Parameter( | |
| trunc_normal_init_(torch.empty((out_features, in_features)), std=1.0 / (in_features ** 0.5)) | |
| ) | |
| self.bias = None | |
| if bias: | |
| # Zero init bias | |
| self.bias = nn.Parameter(torch.zeros((out_features, ))) | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return F.linear(input, self.weight.to(input.dtype), bias=self.bias.to(input.dtype) if self.bias is not None else None) | |
| class CastedEmbedding(nn.Module): | |
| def __init__(self, | |
| num_embeddings: int, | |
| embedding_dim: int, | |
| init_std: float, | |
| cast_to: torch.dtype): | |
| super().__init__() | |
| self.cast_to = cast_to | |
| # Truncated LeCun normal init | |
| self.embedding_weight = nn.Parameter( | |
| trunc_normal_init_(torch.empty((num_embeddings, embedding_dim)), std=init_std) | |
| ) | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return F.embedding(input, self.embedding_weight.to(self.cast_to)) | |
| class RotaryEmbedding(nn.Module): | |
| def __init__(self, dim, max_position_embeddings, base, device=None): | |
| super().__init__() | |
| # RoPE | |
| inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) | |
| t = torch.arange(max_position_embeddings, dtype=torch.float32, device=device) | |
| freqs = torch.outer(t, inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.cos_cached = nn.Buffer(emb.cos(), persistent=False) | |
| self.sin_cached = nn.Buffer(emb.sin(), persistent=False) | |
| def forward(self): | |
| return self.cos_cached, self.sin_cached | |
| class Attention(nn.Module): | |
| def __init__(self, hidden_size, head_dim, num_heads, num_key_value_heads, causal=False): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.head_dim = head_dim | |
| self.output_size = head_dim * num_heads | |
| self.num_heads = num_heads | |
| self.num_key_value_heads = num_key_value_heads | |
| self.causal = causal | |
| self.qkv_proj = CastedLinear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, bias=False) | |
| self.o_proj = CastedLinear(self.output_size, self.hidden_size, bias=False) | |
| def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor: | |
| batch_size, seq_len, _ = hidden_states.shape | |
| # hidden_states: [bs, seq_len, num_heads, head_dim] | |
| qkv = self.qkv_proj(hidden_states) | |
| # Split head | |
| qkv = qkv.view(batch_size, seq_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | |
| query = qkv[:, :, :self.num_heads] | |
| key = qkv[:, :, self.num_heads: self.num_heads + self.num_key_value_heads] | |
| value = qkv[:, :, self.num_heads + self.num_key_value_heads:] | |
| # RoPE | |
| if cos_sin is not None: | |
| cos, sin = cos_sin | |
| query, key = apply_rotary_pos_emb(query, key, cos, sin) | |
| # flash attn | |
| attn_output = flash_attn_func(q=query, k=key, v=value, causal=self.causal) | |
| if isinstance(attn_output, tuple): # fa2 and fa3 compatibility | |
| attn_output = attn_output[0] | |
| # attn_output: [batch_size, num_heads, seq_len, head_dim] | |
| attn_output = attn_output.view(batch_size, seq_len, self.output_size) # type: ignore | |
| return self.o_proj(attn_output) | |
| class SwiGLU(nn.Module): | |
| def __init__(self, hidden_size: int, expansion: float): | |
| super().__init__() | |
| inter = _find_multiple(round(expansion * hidden_size * 2 / 3), 256) | |
| self.gate_up_proj = CastedLinear(hidden_size, inter * 2, bias=False) | |
| self.down_proj = CastedLinear(inter, hidden_size, bias=False) | |
| def forward(self, x): | |
| gate, up = self.gate_up_proj(x).chunk(2, dim=-1) | |
| return self.down_proj(F.silu(gate) * up) | |
| def rms_norm(hidden_states: torch.Tensor, variance_epsilon: float) -> torch.Tensor: | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.square().mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon) | |
| return hidden_states.to(input_dtype) | |