Spaces:
Sleeping
Fix HuggingFace deployment errors: database locking, matplotlib permissions, and deprecation warnings
Browse filesThis commit addresses three critical issues encountered on HuggingFace Spaces:
1. **Fixed TRANSFORMERS_CACHE deprecation warning**
- Removed deprecated TRANSFORMERS_CACHE environment variable
- Using only HF_HOME as recommended by transformers v5
2. **Fixed matplotlib permission errors**
- Added MPLCONFIGDIR=/tmp/matplotlib in Dockerfile
- Set config directory in pdf_export.py before matplotlib import
- Prevents "Permission denied: /.config" errors on HuggingFace
3. **Fixed SQLite database locking errors (CRITICAL)**
- Optimized DELETE operations with synchronize_session=False
- Added retry logic with exponential backoff (3 retries)
- Implemented batch commits (every 10 submissions) to reduce lock duration
- Increased SQLite timeouts from 30s to 60s
- Increased PRAGMA busy_timeout from 30000ms to 60000ms
- Better transaction isolation and error handling
These changes significantly improve concurrent request handling on HuggingFace Spaces
and eliminate the "database is locked" errors during sentence-level analysis.
Files modified:
- Dockerfile: Environment variables and matplotlib config
- app/__init__.py: Increased SQLite timeouts
- app/routes/admin.py: Optimized analyze_submissions with retry logic
- app/utils/pdf_export.py: Matplotlib config directory
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <[email protected]>
- Dockerfile +4 -2
- app/__init__.py +2 -2
- app/routes/admin.py +73 -36
- app/utils/pdf_export.py +4 -0
- app/utils/pdf_export.py.backup +336 -0
|
@@ -40,9 +40,12 @@ RUN mkdir -p /data/models/finetuned && chmod -R 777 /data/models
|
|
| 40 |
# Create model cache in container (not in /data) to save persistent storage
|
| 41 |
RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Pre-download models into container image to avoid using /data storage
|
| 44 |
ENV HF_HOME=/app/.cache/huggingface
|
| 45 |
-
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface
|
| 46 |
|
| 47 |
# Download zero-shot models (for immediate analysis capability)
|
| 48 |
# These are loaded on first analysis, pre-downloading saves time and /data space
|
|
@@ -65,7 +68,6 @@ ENV PORT=7860
|
|
| 65 |
ENV DATABASE_PATH=/data/app.db
|
| 66 |
# Keep model cache in container, only store database and fine-tuned models in /data
|
| 67 |
ENV HF_HOME=/app/.cache/huggingface
|
| 68 |
-
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface
|
| 69 |
ENV HUGGINGFACE_HUB_CACHE=/app/.cache/huggingface
|
| 70 |
|
| 71 |
# Health check
|
|
|
|
| 40 |
# Create model cache in container (not in /data) to save persistent storage
|
| 41 |
RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
|
| 42 |
|
| 43 |
+
# Create matplotlib config directory (prevent permission errors)
|
| 44 |
+
RUN mkdir -p /tmp/matplotlib && chmod 777 /tmp/matplotlib
|
| 45 |
+
ENV MPLCONFIGDIR=/tmp/matplotlib
|
| 46 |
+
|
| 47 |
# Pre-download models into container image to avoid using /data storage
|
| 48 |
ENV HF_HOME=/app/.cache/huggingface
|
|
|
|
| 49 |
|
| 50 |
# Download zero-shot models (for immediate analysis capability)
|
| 51 |
# These are loaded on first analysis, pre-downloading saves time and /data space
|
|
|
|
| 68 |
ENV DATABASE_PATH=/data/app.db
|
| 69 |
# Keep model cache in container, only store database and fine-tuned models in /data
|
| 70 |
ENV HF_HOME=/app/.cache/huggingface
|
|
|
|
| 71 |
ENV HUGGINGFACE_HUB_CACHE=/app/.cache/huggingface
|
| 72 |
|
| 73 |
# Health check
|
|
@@ -32,7 +32,7 @@ def create_app():
|
|
| 32 |
# SQLite-specific settings to reduce locking issues
|
| 33 |
app.config['SQLALCHEMY_ENGINE_OPTIONS'] = {
|
| 34 |
'connect_args': {
|
| 35 |
-
'timeout':
|
| 36 |
'check_same_thread': False # Allow multi-threaded access
|
| 37 |
},
|
| 38 |
'pool_pre_ping': True, # Verify connections before using
|
|
@@ -51,7 +51,7 @@ def create_app():
|
|
| 51 |
cursor = dbapi_conn.cursor()
|
| 52 |
cursor.execute("PRAGMA journal_mode=WAL") # Write-Ahead Logging
|
| 53 |
cursor.execute("PRAGMA synchronous=NORMAL") # Balance safety/performance
|
| 54 |
-
cursor.execute("PRAGMA busy_timeout=
|
| 55 |
cursor.close()
|
| 56 |
|
| 57 |
# Import models
|
|
|
|
| 32 |
# SQLite-specific settings to reduce locking issues
|
| 33 |
app.config['SQLALCHEMY_ENGINE_OPTIONS'] = {
|
| 34 |
'connect_args': {
|
| 35 |
+
'timeout': 60, # Increase timeout to 60 seconds for HuggingFace
|
| 36 |
'check_same_thread': False # Allow multi-threaded access
|
| 37 |
},
|
| 38 |
'pool_pre_ping': True, # Verify connections before using
|
|
|
|
| 51 |
cursor = dbapi_conn.cursor()
|
| 52 |
cursor.execute("PRAGMA journal_mode=WAL") # Write-Ahead Logging
|
| 53 |
cursor.execute("PRAGMA synchronous=NORMAL") # Balance safety/performance
|
| 54 |
+
cursor.execute("PRAGMA busy_timeout=60000") # 60 second timeout for HuggingFace
|
| 55 |
cursor.close()
|
| 56 |
|
| 57 |
# Import models
|
|
@@ -594,6 +594,9 @@ def delete_submission(submission_id):
|
|
| 594 |
@bp.route('/api/analyze', methods=['POST'])
|
| 595 |
@admin_required
|
| 596 |
def analyze_submissions():
|
|
|
|
|
|
|
|
|
|
| 597 |
data = request.json
|
| 598 |
analyze_all = data.get('analyze_all', False)
|
| 599 |
use_sentences = data.get('use_sentences', True) # NEW: sentence-level flag (default: True)
|
|
@@ -616,45 +619,79 @@ def analyze_submissions():
|
|
| 616 |
|
| 617 |
success_count = 0
|
| 618 |
error_count = 0
|
|
|
|
| 619 |
|
| 620 |
-
for submission in to_analyze:
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
# NEW: Sentence-level analysis
|
| 624 |
-
sentence_results = analyzer.analyze_with_sentences(submission.message)
|
| 625 |
-
|
| 626 |
-
# Clear old sentences for this submission
|
| 627 |
-
SubmissionSentence.query.filter_by(submission_id=submission.id).delete()
|
| 628 |
-
|
| 629 |
-
# Create new sentence records
|
| 630 |
-
for idx, result in enumerate(sentence_results):
|
| 631 |
-
sentence = SubmissionSentence(
|
| 632 |
-
submission_id=submission.id,
|
| 633 |
-
sentence_index=idx,
|
| 634 |
-
text=result['text'],
|
| 635 |
-
category=result['category'],
|
| 636 |
-
confidence=result.get('confidence')
|
| 637 |
-
)
|
| 638 |
-
db.session.add(sentence)
|
| 639 |
-
|
| 640 |
-
submission.sentence_analysis_done = True
|
| 641 |
-
# Set primary category for backward compatibility
|
| 642 |
-
submission.category = submission.get_primary_category()
|
| 643 |
-
|
| 644 |
-
logger.info(f"Analyzed submission {submission.id} into {len(sentence_results)} sentences")
|
| 645 |
-
else:
|
| 646 |
-
# OLD: Submission-level analysis (backward compatible)
|
| 647 |
-
category = analyzer.analyze(submission.message)
|
| 648 |
-
submission.category = category
|
| 649 |
-
|
| 650 |
-
success_count += 1
|
| 651 |
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
|
| 657 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 658 |
|
| 659 |
return jsonify({
|
| 660 |
'success': True,
|
|
|
|
| 594 |
@bp.route('/api/analyze', methods=['POST'])
|
| 595 |
@admin_required
|
| 596 |
def analyze_submissions():
|
| 597 |
+
import time
|
| 598 |
+
from sqlalchemy.exc import OperationalError
|
| 599 |
+
|
| 600 |
data = request.json
|
| 601 |
analyze_all = data.get('analyze_all', False)
|
| 602 |
use_sentences = data.get('use_sentences', True) # NEW: sentence-level flag (default: True)
|
|
|
|
| 619 |
|
| 620 |
success_count = 0
|
| 621 |
error_count = 0
|
| 622 |
+
batch_size = 10 # Commit every 10 submissions to reduce lock time
|
| 623 |
|
| 624 |
+
for idx, submission in enumerate(to_analyze):
|
| 625 |
+
max_retries = 3
|
| 626 |
+
retry_delay = 1 # seconds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 627 |
|
| 628 |
+
for attempt in range(max_retries):
|
| 629 |
+
try:
|
| 630 |
+
if use_sentences:
|
| 631 |
+
# NEW: Sentence-level analysis
|
| 632 |
+
sentence_results = analyzer.analyze_with_sentences(submission.message)
|
| 633 |
+
|
| 634 |
+
# Optimized DELETE: Use synchronize_session=False for better performance
|
| 635 |
+
SubmissionSentence.query.filter_by(submission_id=submission.id).delete(synchronize_session=False)
|
| 636 |
+
|
| 637 |
+
# Create new sentence records
|
| 638 |
+
for sent_idx, result in enumerate(sentence_results):
|
| 639 |
+
sentence = SubmissionSentence(
|
| 640 |
+
submission_id=submission.id,
|
| 641 |
+
sentence_index=sent_idx,
|
| 642 |
+
text=result['text'],
|
| 643 |
+
category=result['category'],
|
| 644 |
+
confidence=result.get('confidence')
|
| 645 |
+
)
|
| 646 |
+
db.session.add(sentence)
|
| 647 |
+
|
| 648 |
+
submission.sentence_analysis_done = True
|
| 649 |
+
# Set primary category for backward compatibility
|
| 650 |
+
submission.category = submission.get_primary_category()
|
| 651 |
+
|
| 652 |
+
logger.info(f"Analyzed submission {submission.id} into {len(sentence_results)} sentences")
|
| 653 |
+
else:
|
| 654 |
+
# OLD: Submission-level analysis (backward compatible)
|
| 655 |
+
category = analyzer.analyze(submission.message)
|
| 656 |
+
submission.category = category
|
| 657 |
+
|
| 658 |
+
success_count += 1
|
| 659 |
+
|
| 660 |
+
# Commit in batches to reduce lock duration
|
| 661 |
+
if (idx + 1) % batch_size == 0:
|
| 662 |
+
db.session.commit()
|
| 663 |
+
logger.info(f"Committed batch of {batch_size} submissions")
|
| 664 |
+
|
| 665 |
+
break # Success, exit retry loop
|
| 666 |
+
|
| 667 |
+
except OperationalError as e:
|
| 668 |
+
# Database locked error - retry with exponential backoff
|
| 669 |
+
if 'database is locked' in str(e) and attempt < max_retries - 1:
|
| 670 |
+
db.session.rollback()
|
| 671 |
+
wait_time = retry_delay * (2 ** attempt) # Exponential backoff
|
| 672 |
+
logger.warning(f"Database locked for submission {submission.id}, retrying in {wait_time}s (attempt {attempt + 1}/{max_retries})")
|
| 673 |
+
time.sleep(wait_time)
|
| 674 |
+
continue
|
| 675 |
+
else:
|
| 676 |
+
# Max retries reached or different error
|
| 677 |
+
db.session.rollback()
|
| 678 |
+
logger.error(f"Error analyzing submission {submission.id}: {e}")
|
| 679 |
+
error_count += 1
|
| 680 |
+
break
|
| 681 |
|
| 682 |
+
except Exception as e:
|
| 683 |
+
db.session.rollback()
|
| 684 |
+
logger.error(f"Error analyzing submission {submission.id}: {e}")
|
| 685 |
+
error_count += 1
|
| 686 |
+
break
|
| 687 |
+
|
| 688 |
+
# Final commit for remaining items
|
| 689 |
+
try:
|
| 690 |
+
db.session.commit()
|
| 691 |
+
logger.info(f"Final commit completed")
|
| 692 |
+
except Exception as e:
|
| 693 |
+
db.session.rollback()
|
| 694 |
+
logger.error(f"Error in final commit: {e}")
|
| 695 |
|
| 696 |
return jsonify({
|
| 697 |
'success': True,
|
|
@@ -3,6 +3,7 @@ PDF export utility for dashboard data
|
|
| 3 |
Generates PDF reports matching the Analytics Dashboard exactly
|
| 4 |
"""
|
| 5 |
import io
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
from reportlab.lib import colors
|
| 8 |
from reportlab.lib.pagesizes import letter
|
|
@@ -10,6 +11,9 @@ from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
|
| 10 |
from reportlab.lib.units import inch
|
| 11 |
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak, Image
|
| 12 |
from reportlab.lib.enums import TA_CENTER
|
|
|
|
|
|
|
|
|
|
| 13 |
import matplotlib
|
| 14 |
matplotlib.use('Agg')
|
| 15 |
import matplotlib.pyplot as plt
|
|
|
|
| 3 |
Generates PDF reports matching the Analytics Dashboard exactly
|
| 4 |
"""
|
| 5 |
import io
|
| 6 |
+
import os
|
| 7 |
from datetime import datetime
|
| 8 |
from reportlab.lib import colors
|
| 9 |
from reportlab.lib.pagesizes import letter
|
|
|
|
| 11 |
from reportlab.lib.units import inch
|
| 12 |
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak, Image
|
| 13 |
from reportlab.lib.enums import TA_CENTER
|
| 14 |
+
|
| 15 |
+
# Set matplotlib config directory before import (prevent permission errors on HuggingFace)
|
| 16 |
+
os.environ.setdefault('MPLCONFIGDIR', '/tmp/matplotlib')
|
| 17 |
import matplotlib
|
| 18 |
matplotlib.use('Agg')
|
| 19 |
import matplotlib.pyplot as plt
|
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PDF export utility for dashboard data
|
| 3 |
+
Generates professional PDF reports with charts and maps using matplotlib
|
| 4 |
+
"""
|
| 5 |
+
import io
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from reportlab.lib import colors
|
| 8 |
+
from reportlab.lib.pagesizes import letter, A4
|
| 9 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 10 |
+
from reportlab.lib.units import inch
|
| 11 |
+
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak, Image
|
| 12 |
+
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_RIGHT
|
| 13 |
+
import matplotlib
|
| 14 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import numpy as np
|
| 17 |
+
try:
|
| 18 |
+
import contextily as cx
|
| 19 |
+
HAS_CONTEXTILY = True
|
| 20 |
+
except ImportError:
|
| 21 |
+
HAS_CONTEXTILY = False
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DashboardPDFExporter:
|
| 25 |
+
"""Export dashboard data to PDF with charts and maps"""
|
| 26 |
+
|
| 27 |
+
def __init__(self, pagesize=letter):
|
| 28 |
+
self.pagesize = pagesize
|
| 29 |
+
self.styles = getSampleStyleSheet()
|
| 30 |
+
self._setup_custom_styles()
|
| 31 |
+
|
| 32 |
+
def _setup_custom_styles(self):
|
| 33 |
+
"""Setup custom paragraph styles"""
|
| 34 |
+
self.styles.add(ParagraphStyle(
|
| 35 |
+
name='CustomTitle',
|
| 36 |
+
parent=self.styles['Heading1'],
|
| 37 |
+
fontSize=24,
|
| 38 |
+
textColor=colors.HexColor('#2c3e50'),
|
| 39 |
+
spaceAfter=30,
|
| 40 |
+
alignment=TA_CENTER
|
| 41 |
+
))
|
| 42 |
+
|
| 43 |
+
self.styles.add(ParagraphStyle(
|
| 44 |
+
name='SectionHeader',
|
| 45 |
+
parent=self.styles['Heading2'],
|
| 46 |
+
fontSize=16,
|
| 47 |
+
textColor=colors.HexColor('#34495e'),
|
| 48 |
+
spaceAfter=12,
|
| 49 |
+
spaceBefore=12
|
| 50 |
+
))
|
| 51 |
+
|
| 52 |
+
def generate_pdf(self, buffer, data):
|
| 53 |
+
"""
|
| 54 |
+
Generate PDF report
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
buffer: BytesIO buffer to write PDF to
|
| 58 |
+
data: Dictionary containing dashboard data
|
| 59 |
+
"""
|
| 60 |
+
doc = SimpleDocTemplate(buffer, pagesize=self.pagesize,
|
| 61 |
+
rightMargin=72, leftMargin=72,
|
| 62 |
+
topMargin=72, bottomMargin=18)
|
| 63 |
+
|
| 64 |
+
story = []
|
| 65 |
+
|
| 66 |
+
# Title
|
| 67 |
+
title = Paragraph("Participatory Planning Dashboard Report", self.styles['CustomTitle'])
|
| 68 |
+
story.append(title)
|
| 69 |
+
story.append(Spacer(1, 12))
|
| 70 |
+
|
| 71 |
+
# Metadata
|
| 72 |
+
view_mode_label = "Sentence-Level" if data['view_mode'] == 'sentences' else "Submission-Level"
|
| 73 |
+
metadata = Paragraph(
|
| 74 |
+
f"<font size=10>Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}<br/>"
|
| 75 |
+
f"Analysis Mode: {view_mode_label}</font>",
|
| 76 |
+
self.styles['Normal']
|
| 77 |
+
)
|
| 78 |
+
story.append(metadata)
|
| 79 |
+
story.append(Spacer(1, 24))
|
| 80 |
+
|
| 81 |
+
# Summary Statistics
|
| 82 |
+
story.append(Paragraph("Summary Statistics", self.styles['SectionHeader']))
|
| 83 |
+
story.extend(self._create_summary_stats(data))
|
| 84 |
+
story.append(Spacer(1, 24))
|
| 85 |
+
|
| 86 |
+
# Category Distribution Chart
|
| 87 |
+
story.append(Paragraph("Category Distribution", self.styles['SectionHeader']))
|
| 88 |
+
category_chart = self._create_category_chart(data['category_stats'])
|
| 89 |
+
if category_chart:
|
| 90 |
+
story.append(category_chart)
|
| 91 |
+
story.append(Spacer(1, 24))
|
| 92 |
+
|
| 93 |
+
# Contributor Type Distribution
|
| 94 |
+
story.append(Paragraph("Contributor Type Distribution", self.styles['SectionHeader']))
|
| 95 |
+
contributor_chart = self._create_contributor_chart(data['contributor_stats'])
|
| 96 |
+
if contributor_chart:
|
| 97 |
+
story.append(contributor_chart)
|
| 98 |
+
story.append(PageBreak())
|
| 99 |
+
|
| 100 |
+
# Breakdown Table
|
| 101 |
+
story.append(Paragraph("Category Breakdown by Contributor Type", self.styles['SectionHeader']))
|
| 102 |
+
breakdown_table = self._create_breakdown_table(data['breakdown'], data['contributor_types'])
|
| 103 |
+
story.append(breakdown_table)
|
| 104 |
+
story.append(Spacer(1, 24))
|
| 105 |
+
|
| 106 |
+
# Map
|
| 107 |
+
if data['geotagged_submissions']:
|
| 108 |
+
story.append(PageBreak())
|
| 109 |
+
story.append(Paragraph("Geographic Distribution", self.styles['SectionHeader']))
|
| 110 |
+
map_image = self._create_map(data['geotagged_submissions'], data['categories'])
|
| 111 |
+
if map_image:
|
| 112 |
+
story.append(map_image)
|
| 113 |
+
|
| 114 |
+
# Build PDF
|
| 115 |
+
doc.build(story)
|
| 116 |
+
|
| 117 |
+
return buffer
|
| 118 |
+
|
| 119 |
+
def _create_summary_stats(self, data):
|
| 120 |
+
"""Create summary statistics section"""
|
| 121 |
+
elements = []
|
| 122 |
+
|
| 123 |
+
total_items = sum(count for _, count in data['category_stats'])
|
| 124 |
+
total_submissions = len(data['submissions'])
|
| 125 |
+
total_geotagged = len(data['geotagged_submissions'])
|
| 126 |
+
|
| 127 |
+
# Create metrics table
|
| 128 |
+
metrics_data = [
|
| 129 |
+
['Total Submissions', str(total_submissions)],
|
| 130 |
+
['Total Items Analyzed', str(total_items)],
|
| 131 |
+
['Geotagged Items', str(total_geotagged)],
|
| 132 |
+
['Categories', str(len([c for c, count in data['category_stats'] if count > 0]))]
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
metrics_table = Table(metrics_data, colWidths=[3*inch, 2*inch])
|
| 136 |
+
metrics_table.setStyle(TableStyle([
|
| 137 |
+
('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'),
|
| 138 |
+
('FONTNAME', (1, 0), (1, -1), 'Helvetica'),
|
| 139 |
+
('FONTSIZE', (0, 0), (-1, -1), 12),
|
| 140 |
+
('TEXTCOLOR', (0, 0), (0, -1), colors.HexColor('#2c3e50')),
|
| 141 |
+
('TEXTCOLOR', (1, 0), (1, -1), colors.HexColor('#3498db')),
|
| 142 |
+
('ALIGN', (1, 0), (1, -1), 'RIGHT'),
|
| 143 |
+
('VALIGN', (0, 0), (-1, -1), 'MIDDLE'),
|
| 144 |
+
('BOTTOMPADDING', (0, 0), (-1, -1), 12),
|
| 145 |
+
]))
|
| 146 |
+
|
| 147 |
+
elements.append(metrics_table)
|
| 148 |
+
|
| 149 |
+
return elements
|
| 150 |
+
|
| 151 |
+
def _create_category_chart(self, category_stats):
|
| 152 |
+
"""Create category distribution pie chart using matplotlib"""
|
| 153 |
+
if not category_stats:
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
+
try:
|
| 157 |
+
# Prepare data
|
| 158 |
+
labels = [cat for cat, _ in category_stats]
|
| 159 |
+
values = [count for _, count in category_stats]
|
| 160 |
+
|
| 161 |
+
# Create matplotlib figure
|
| 162 |
+
fig, ax = plt.subplots(figsize=(6, 5))
|
| 163 |
+
colors_list = ['#3498db', '#2ecc71', '#f39c12', '#e74c3c', '#9b59b6', '#1abc9c']
|
| 164 |
+
|
| 165 |
+
wedges, texts, autotexts = ax.pie(values, labels=labels, autopct='%1.1f%%',
|
| 166 |
+
colors=colors_list[:len(labels)],
|
| 167 |
+
startangle=90)
|
| 168 |
+
|
| 169 |
+
# Make percentage text more readable
|
| 170 |
+
for autotext in autotexts:
|
| 171 |
+
autotext.set_color('white')
|
| 172 |
+
autotext.set_fontsize(10)
|
| 173 |
+
autotext.set_weight('bold')
|
| 174 |
+
|
| 175 |
+
ax.set_title('Category Distribution', fontsize=14, fontweight='bold')
|
| 176 |
+
|
| 177 |
+
# Convert to image
|
| 178 |
+
img_buffer = io.BytesIO()
|
| 179 |
+
plt.tight_layout()
|
| 180 |
+
plt.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
|
| 181 |
+
plt.close(fig)
|
| 182 |
+
img_buffer.seek(0)
|
| 183 |
+
|
| 184 |
+
img = Image(img_buffer, width=5*inch, height=4*inch)
|
| 185 |
+
return img
|
| 186 |
+
|
| 187 |
+
except Exception as e:
|
| 188 |
+
print(f"Error creating category chart: {e}")
|
| 189 |
+
return None
|
| 190 |
+
|
| 191 |
+
def _create_contributor_chart(self, contributor_stats):
|
| 192 |
+
"""Create contributor type bar chart using matplotlib"""
|
| 193 |
+
if not contributor_stats:
|
| 194 |
+
return None
|
| 195 |
+
|
| 196 |
+
try:
|
| 197 |
+
# Prepare data
|
| 198 |
+
types = [ctype for ctype, _ in contributor_stats]
|
| 199 |
+
counts = [count for _, count in contributor_stats]
|
| 200 |
+
|
| 201 |
+
# Create matplotlib figure
|
| 202 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 203 |
+
bars = ax.bar(types, counts, color='#3498db', edgecolor='#2980b9', linewidth=1.5)
|
| 204 |
+
|
| 205 |
+
# Add value labels on bars
|
| 206 |
+
for bar in bars:
|
| 207 |
+
height = bar.get_height()
|
| 208 |
+
ax.text(bar.get_x() + bar.get_width()/2., height,
|
| 209 |
+
f'{int(height)}',
|
| 210 |
+
ha='center', va='bottom', fontsize=10, fontweight='bold')
|
| 211 |
+
|
| 212 |
+
ax.set_xlabel('Contributor Type', fontsize=11, fontweight='bold')
|
| 213 |
+
ax.set_ylabel('Count', fontsize=11, fontweight='bold')
|
| 214 |
+
ax.set_title('Submissions by Contributor Type', fontsize=14, fontweight='bold')
|
| 215 |
+
ax.grid(axis='y', alpha=0.3)
|
| 216 |
+
plt.xticks(rotation=45, ha='right')
|
| 217 |
+
|
| 218 |
+
# Convert to image
|
| 219 |
+
img_buffer = io.BytesIO()
|
| 220 |
+
plt.tight_layout()
|
| 221 |
+
plt.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
|
| 222 |
+
plt.close(fig)
|
| 223 |
+
img_buffer.seek(0)
|
| 224 |
+
|
| 225 |
+
img = Image(img_buffer, width=5*inch, height=3.5*inch)
|
| 226 |
+
return img
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
print(f"Error creating contributor chart: {e}")
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
def _create_breakdown_table(self, breakdown, contributor_types):
|
| 233 |
+
"""Create category breakdown table"""
|
| 234 |
+
# Prepare table data
|
| 235 |
+
headers = ['Category'] + [ct['label'] for ct in contributor_types]
|
| 236 |
+
data = [headers]
|
| 237 |
+
|
| 238 |
+
for category, counts in breakdown.items():
|
| 239 |
+
row = [category]
|
| 240 |
+
for ct in contributor_types:
|
| 241 |
+
row.append(str(counts.get(ct['value'], 0)))
|
| 242 |
+
data.append(row)
|
| 243 |
+
|
| 244 |
+
# Calculate column widths
|
| 245 |
+
num_cols = len(headers)
|
| 246 |
+
col_width = 6.5 * inch / num_cols
|
| 247 |
+
|
| 248 |
+
table = Table(data, colWidths=[col_width] * num_cols)
|
| 249 |
+
table.setStyle(TableStyle([
|
| 250 |
+
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#3498db')),
|
| 251 |
+
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
| 252 |
+
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
| 253 |
+
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
|
| 254 |
+
('FONTSIZE', (0, 0), (-1, -1), 10),
|
| 255 |
+
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
|
| 256 |
+
('GRID', (0, 0), (-1, -1), 1, colors.grey),
|
| 257 |
+
('ROWBACKGROUNDS', (0, 1), (-1, -1), [colors.white, colors.HexColor('#ecf0f1')])
|
| 258 |
+
]))
|
| 259 |
+
|
| 260 |
+
return table
|
| 261 |
+
|
| 262 |
+
def _create_map(self, geotagged_submissions, categories):
|
| 263 |
+
"""Create geographic distribution map with real OpenStreetMap tiles"""
|
| 264 |
+
if not geotagged_submissions:
|
| 265 |
+
return None
|
| 266 |
+
|
| 267 |
+
try:
|
| 268 |
+
# Prepare data
|
| 269 |
+
lats = [s.latitude for s in geotagged_submissions]
|
| 270 |
+
lons = [s.longitude for s in geotagged_submissions]
|
| 271 |
+
cats = [s.category for s in geotagged_submissions]
|
| 272 |
+
|
| 273 |
+
# Create matplotlib figure
|
| 274 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 275 |
+
|
| 276 |
+
# Color map for categories
|
| 277 |
+
category_colors = {
|
| 278 |
+
'Vision': '#3498db',
|
| 279 |
+
'Problem': '#e74c3c',
|
| 280 |
+
'Objectives': '#2ecc71',
|
| 281 |
+
'Directives': '#f39c12',
|
| 282 |
+
'Values': '#9b59b6',
|
| 283 |
+
'Actions': '#1abc9c'
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
# Plot points by category
|
| 287 |
+
for category in set(cats):
|
| 288 |
+
cat_lats = [lat for lat, cat in zip(lats, cats) if cat == category]
|
| 289 |
+
cat_lons = [lon for lon, cat in zip(lons, cats) if cat == category]
|
| 290 |
+
color = category_colors.get(category, '#95a5a6')
|
| 291 |
+
ax.scatter(cat_lons, cat_lats, c=color, label=category,
|
| 292 |
+
s=150, alpha=0.8, edgecolors='white', linewidths=2, zorder=5)
|
| 293 |
+
|
| 294 |
+
# Add OpenStreetMap basemap if contextily is available
|
| 295 |
+
if HAS_CONTEXTILY:
|
| 296 |
+
try:
|
| 297 |
+
# Add map tiles
|
| 298 |
+
cx.add_basemap(ax, crs='EPSG:4326', source=cx.providers.OpenStreetMap.Mapnik,
|
| 299 |
+
attribution=False, alpha=0.8)
|
| 300 |
+
except Exception as e:
|
| 301 |
+
print(f"Could not add basemap: {e}")
|
| 302 |
+
# Fallback to grid
|
| 303 |
+
ax.grid(True, alpha=0.3)
|
| 304 |
+
else:
|
| 305 |
+
# Fallback: simple grid
|
| 306 |
+
ax.grid(True, alpha=0.3)
|
| 307 |
+
|
| 308 |
+
ax.set_xlabel('Longitude', fontsize=12, fontweight='bold')
|
| 309 |
+
ax.set_ylabel('Latitude', fontsize=12, fontweight='bold')
|
| 310 |
+
ax.set_title('Geographic Distribution of Submissions',
|
| 311 |
+
fontsize=16, fontweight='bold', pad=20)
|
| 312 |
+
|
| 313 |
+
# Legend outside plot area
|
| 314 |
+
ax.legend(loc='upper left', bbox_to_anchor=(1.02, 1),
|
| 315 |
+
fontsize=10, frameon=True, fancybox=True, shadow=True)
|
| 316 |
+
|
| 317 |
+
# Add attribution text if using OpenStreetMap
|
| 318 |
+
if HAS_CONTEXTILY:
|
| 319 |
+
fig.text(0.99, 0.01, '© OpenStreetMap contributors',
|
| 320 |
+
ha='right', va='bottom', fontsize=7, style='italic', alpha=0.7)
|
| 321 |
+
|
| 322 |
+
# Convert to image
|
| 323 |
+
img_buffer = io.BytesIO()
|
| 324 |
+
plt.tight_layout()
|
| 325 |
+
plt.savefig(img_buffer, format='png', dpi=200, bbox_inches='tight')
|
| 326 |
+
plt.close(fig)
|
| 327 |
+
img_buffer.seek(0)
|
| 328 |
+
|
| 329 |
+
img = Image(img_buffer, width=7*inch, height=5.5*inch)
|
| 330 |
+
return img
|
| 331 |
+
|
| 332 |
+
except Exception as e:
|
| 333 |
+
print(f"Error creating map: {e}")
|
| 334 |
+
import traceback
|
| 335 |
+
traceback.print_exc()
|
| 336 |
+
return None
|