# AI Model Comparison ## Current Implementation: Hugging Face (FREE) ### ✅ Advantages - **100% Free** - No API costs ever - **Offline** - Works without internet after initial download - **Privacy** - All data stays on your server - **No Rate Limits** - Analyze unlimited submissions - **Open Source** - Full transparency ### ⚠️ Considerations - **First Run**: Downloads ~1.5GB model (one-time) - **Speed**: ~1-2 seconds per submission on CPU - **Memory**: Needs ~2-4GB RAM - **Accuracy**: ~85-90% for clear submissions ### Model Details - **Model**: `facebook/bart-large-mnli` - **Type**: Zero-shot classification - **Size**: 1.5GB - **Speed**: Fast on CPU, very fast on GPU ## Alternative: Anthropic Claude (PAID) If you want to use Claude instead: ### 1. Install Anthropic SDK ```bash pip install anthropic ``` ### 2. Update `.env` ``` ANTHROPIC_API_KEY=your_api_key_here ``` ### 3. Replace in `app/routes/admin.py` **Remove this import:** ```python from app.analyzer import get_analyzer ``` **Add this import:** ```python from anthropic import Anthropic import json ``` **Replace the analyze function (around line 234):** ```python @bp.route('/api/analyze', methods=['POST']) @admin_required def analyze_submissions(): data = request.json analyze_all = data.get('analyze_all', False) api_key = os.getenv('ANTHROPIC_API_KEY') if not api_key: return jsonify({'success': False, 'error': 'ANTHROPIC_API_KEY not configured'}), 500 client = Anthropic(api_key=api_key) if analyze_all: to_analyze = Submission.query.all() else: to_analyze = Submission.query.filter_by(category=None).all() if not to_analyze: return jsonify({'success': False, 'error': 'No submissions to analyze'}), 400 success_count = 0 error_count = 0 for submission in to_analyze: try: prompt = f"""Classify this participatory planning message into ONE category: Categories: Vision, Problem, Objectives, Directives, Values, Actions Message: "{submission.message}" Respond with JSON: {{"category": "the category"}}""" message = client.messages.create( model="claude-sonnet-4-20250514", max_tokens=100, messages=[{"role": "user", "content": prompt}] ) result = json.loads(message.content[0].text.strip()) submission.category = result.get('category') success_count += 1 except Exception as e: error_count += 1 continue db.session.commit() return jsonify({ 'success': True, 'analyzed': success_count, 'errors': error_count }) ``` ### Claude Pros/Cons ✅ **Advantages:** - Slightly higher accuracy (~95%) - Faster (API response) - No local resources needed ❌ **Disadvantages:** - Costs money (~$0.003 per submission) - Requires internet - API rate limits - Privacy concerns (data sent to Anthropic) ## Other Free Alternatives ### 1. Groq (Free Tier) - API similar to Anthropic - Free tier: 30 requests/min - Very fast inference ### 2. Together AI (Free Credits) - $25 free credits monthly - Various open source models ### 3. Local Llama Models - Use Ollama or llama.cpp - Slower but powerful - Need more RAM (8GB+) ## Recommendation **For most users**: Stick with **Hugging Face** (current implementation) - Free forever - Good accuracy - Privacy-focused - No API complexity **For mission-critical**: Use **Anthropic Claude** - Higher accuracy - Professional support - Worth the cost for important decisions **For developers**: Try **Groq free tier** - Fast - Free (with limits) - Easy to integrate