# Evaluation Configuration# Evaluation Configuration# Evaluation Configuration # Evaluate model on test sets from raw audio # Copy this file to eval.yaml and update paths# Evaluate model on test sets from raw audio# Architecture: WavLM + Attentive Pooling + LayerNorm + Deeper Heads # Model# Copy this file to eval.yaml and update paths# Copy this file to eval.yaml and update paths model: checkpoint: "path/to/best_model" name: "microsoft/wavlm-base-plus" head_hidden_dim: 256# Model# Model # Audio Processingmodel:model: audio: sampling_rate: 16000 checkpoint: "path/to/best_model" checkpoint: "path/to/best_model" max_duration: 5 name: "microsoft/wavlm-base-plus" name: "microsoft/wavlm-base-plus" # Evaluation evaluation: head_hidden_dim: 256 head_hidden_dim: 256 batch_size: 32 dataloader_num_workers: 2 # Data Paths# Audio Processing# Audio Processing data: # === ViSpeech (CSV format) ===audio:audio: clean_test_meta: "path/to/metadata/clean_testset.csv" clean_test_audio: "path/to/clean_testset" sampling_rate: 16000 sampling_rate: 16000 noisy_test_meta: "path/to/metadata/noisy_testset.csv" noisy_test_audio: "path/to/noisy_testset" max_duration: 5 max_duration: 5 # === ViMD (HuggingFace format) === vimd_path: "/path/to/vimd-dataset" # Evaluation# Evaluation # Output output:evaluation:evaluation: dir: "output/evaluation" save_predictions: true batch_size: 32 batch_size: 32 save_confusion_matrix: true dataloader_num_workers: 2 dataloader_num_workers: 2 # Label Mappings labels: gender: Male: 0# Data Paths# Data Paths (UPDATE THESE PATHS) Female: 1 0: 0data:data: 1: 1 dialect: clean_test_meta: "path/to/metadata/clean_testset.csv" clean_test_meta: "path/to/metadata/clean_testset.csv" North: 0 Central: 1 clean_test_audio: "path/to/clean_testset" clean_test_audio: "path/to/clean_testset" South: 2 region_to_dialect: noisy_test_meta: "path/to/metadata/noisy_testset.csv" noisy_test_meta: "path/to/metadata/noisy_testset.csv" North: 0 Central: 1 noisy_test_audio: "path/to/noisy_testset" noisy_test_audio: "path/to/noisy_testset" South: 2 # Baseline Comparison (PACLIC 2024 - ResNet34) baseline:# Output# Output gender: clean: 98.73output:output: noisy: 98.14 dialect: dir: "output/evaluation" dir: "output/evaluation" clean: 81.47 noisy: 74.80 save_predictions: true save_predictions: true save_confusion_matrix: true save_confusion_matrix: true # Label Mappings# Label Mappings labels:labels: gender: gender: Male: 0 Male: 0 Female: 1 Female: 1 0: 0 dialect: 1: 1 North: 0 dialect: Central: 1 North: 0 South: 2 Central: 1 South: 2# Baseline Comparison (PACLIC 2024 - ResNet34) baseline: # Baseline Comparison (PACLIC 2024 - ResNet34) gender: baseline: clean: 98.73 gender: noisy: 98.14 clean: 98.73 dialect: noisy: 98.14 clean: 81.47 dialect: noisy: 74.80 clean: 81.47 noisy: 74.80