File size: 7,406 Bytes
19b19f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
"""
Advanced helper script to download the int4 model files using HfFileSystem
"""

import os
import sys
import logging
from pathlib import Path
from tqdm import tqdm

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Model configuration
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft"
INT4_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft/int4"
LOCAL_MODEL_PATH = "./int4"

def get_file_info(fs, repo_path):
    """Get detailed information about files in the repository"""
    try:
        files = fs.ls(repo_path, detail=True)
        return [f for f in files if f['type'] == 'file']
    except Exception as e:
        logger.error(f"Error listing files in {repo_path}: {e}")
        return []

def download_with_progress(fs, remote_path, local_path, file_size):
    """Download a file with progress bar"""
    try:
        # Create directory if it doesn't exist
        os.makedirs(os.path.dirname(local_path), exist_ok=True)
        
        # Download with progress bar
        with tqdm(total=file_size, unit='B', unit_scale=True, desc=os.path.basename(local_path)) as pbar:
            with fs.open(remote_path, 'rb') as remote_file:
                with open(local_path, 'wb') as local_file:
                    chunk_size = 8192
                    while True:
                        chunk = remote_file.read(chunk_size)
                        if not chunk:
                            break
                        local_file.write(chunk)
                        pbar.update(len(chunk))
        
        return True
    except Exception as e:
        logger.error(f"Error downloading {remote_path}: {e}")
        return False

def download_model_advanced():
    """Download the int4 model files using advanced HfFileSystem features"""
    try:
        logger.info(f"Downloading int4 model from {INT4_MODEL_ID}")
        
        # Create local directory if it doesn't exist
        os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
        
        # Use HfFileSystem for downloading
        from huggingface_hub import HfFileSystem
        
        # Initialize the file system
        fs = HfFileSystem()
        
        # Check if repository exists
        if not fs.exists(INT4_MODEL_ID):
            logger.error(f"Repository {INT4_MODEL_ID} does not exist")
            return False
        
        # Get file information
        files = get_file_info(fs, INT4_MODEL_ID)
        if not files:
            logger.error("No files found in repository")
            return False
        
        # Filter essential model files
        essential_files = [
            'config.json',
            'pytorch_model.bin',
            'tokenizer.json',
            'tokenizer_config.json',
            'special_tokens_map.json',
            'generation_config.json'
        ]
        
        files_to_download = []
        for file_info in files:
            file_name = os.path.basename(file_info['name'])
            if file_name in essential_files:
                files_to_download.append(file_info)
        
        logger.info(f"Found {len(files_to_download)} essential files to download")
        
        # Download each file
        successful_downloads = 0
        for file_info in files_to_download:
            file_path = file_info['name']
            file_name = os.path.basename(file_path)
            local_file_path = os.path.join(LOCAL_MODEL_PATH, file_name)
            file_size = file_info.get('size', 0)
            
            logger.info(f"Downloading {file_name} ({file_size} bytes)...")
            
            # Download the file with progress
            if download_with_progress(fs, file_path, local_file_path, file_size):
                successful_downloads += 1
                logger.info(f"Successfully downloaded {file_name}")
            else:
                logger.error(f"Failed to download {file_name}")
        
        logger.info(f"Downloaded {successful_downloads}/{len(files_to_download)} files")
        return successful_downloads == len(files_to_download)
        
    except Exception as e:
        logger.error(f"Error downloading model: {e}")
        return False

def verify_download_advanced():
    """Advanced verification of downloaded model files"""
    try:
        logger.info("Verifying downloaded model files...")
        
        # Expected file sizes (approximate)
        expected_files = {
            "config.json": (1000, 10000),  # (min_size, max_size) in bytes
            "pytorch_model.bin": (1000000, 5000000000),  # Should be several MB
            "tokenizer.json": (10000, 1000000),  # Should be several KB
            "tokenizer_config.json": (100, 10000),  # Minimum size
            "special_tokens_map.json": (100, 10000),
            "generation_config.json": (100, 10000)
        }
        
        verification_results = []
        
        for file_name, (min_size, max_size) in expected_files.items():
            file_path = os.path.join(LOCAL_MODEL_PATH, file_name)
            if os.path.exists(file_path):
                actual_size = os.path.getsize(file_path)
                if min_size <= actual_size <= max_size:
                    logger.info(f"βœ… {file_name} verified ({actual_size} bytes)")
                    verification_results.append(True)
                else:
                    logger.warning(f"⚠️ {file_name} size unexpected ({actual_size} bytes)")
                    verification_results.append(False)
            else:
                logger.error(f"❌ Missing {file_name}")
                verification_results.append(False)
        
        success_rate = sum(verification_results) / len(verification_results)
        logger.info(f"Verification complete: {sum(verification_results)}/{len(verification_results)} files valid")
        
        return success_rate >= 0.8  # Allow 20% tolerance
        
    except Exception as e:
        logger.error(f"Error verifying files: {e}")
        return False

def check_model_files():
    """Check if required model files exist"""
    required_files = [
        "config.json",
        "pytorch_model.bin",
        "tokenizer.json",
        "tokenizer_config.json"
    ]
    
    missing_files = []
    for file in required_files:
        file_path = os.path.join(LOCAL_MODEL_PATH, file)
        if not os.path.exists(file_path):
            missing_files.append(file)
    
    if missing_files:
        logger.error(f"Missing model files: {missing_files}")
        return False
    
    logger.info("All required model files found")
    return True

def main():
    """Main function to download model at build time"""
    logger.info("Starting advanced model download for Hugging Face Space...")
    
    # Check if model files already exist
    if check_model_files():
        logger.info("Model files already exist, skipping download")
        return True
    
    # Download the model using advanced method
    if download_model_advanced():
        # Verify the download
        if verify_download_advanced():
            logger.info("Model download and verification completed successfully")
            return True
        else:
            logger.error("Model verification failed")
            return False
    else:
        logger.error("Model download failed")
        return False

if __name__ == "__main__":
    success = main()
    sys.exit(0 if success else 1)