Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Create app-backup.py
Browse files- app-backup.py +639 -0
    	
        app-backup.py
    ADDED
    
    | @@ -0,0 +1,639 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import spaces
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            from typing import List, Dict, Any, Optional, Tuple
         | 
| 5 | 
            +
            import hashlib
         | 
| 6 | 
            +
            from datetime import datetime
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            from transformers import pipeline, TextIteratorStreamer
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            from threading import Thread
         | 
| 11 | 
            +
            import re
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            # PDF μ²λ¦¬ λΌμ΄λΈλ¬λ¦¬
         | 
| 14 | 
            +
            try:
         | 
| 15 | 
            +
                import fitz  # PyMuPDF
         | 
| 16 | 
            +
                PDF_AVAILABLE = True
         | 
| 17 | 
            +
            except ImportError:
         | 
| 18 | 
            +
                PDF_AVAILABLE = False
         | 
| 19 | 
            +
                print("β οΈ PyMuPDF not installed. Install with: pip install pymupdf")
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            try:
         | 
| 22 | 
            +
                from sentence_transformers import SentenceTransformer
         | 
| 23 | 
            +
                ST_AVAILABLE = True
         | 
| 24 | 
            +
            except ImportError:
         | 
| 25 | 
            +
                ST_AVAILABLE = False
         | 
| 26 | 
            +
                print("β οΈ Sentence Transformers not installed. Install with: pip install sentence-transformers")
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            # Custom CSS
         | 
| 29 | 
            +
            custom_css = """
         | 
| 30 | 
            +
            .gradio-container {
         | 
| 31 | 
            +
                background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
         | 
| 32 | 
            +
                min-height: 100vh;
         | 
| 33 | 
            +
                font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
         | 
| 34 | 
            +
            }
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            .main-container {
         | 
| 37 | 
            +
                background: rgba(255, 255, 255, 0.98);
         | 
| 38 | 
            +
                border-radius: 16px;
         | 
| 39 | 
            +
                padding: 24px;
         | 
| 40 | 
            +
                box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
         | 
| 41 | 
            +
                border: 1px solid rgba(0, 0, 0, 0.05);
         | 
| 42 | 
            +
                margin: 12px;
         | 
| 43 | 
            +
            }
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            .pdf-status {
         | 
| 46 | 
            +
                padding: 12px 16px;
         | 
| 47 | 
            +
                border-radius: 12px;
         | 
| 48 | 
            +
                margin: 12px 0;
         | 
| 49 | 
            +
                font-size: 0.95rem;
         | 
| 50 | 
            +
                font-weight: 500;
         | 
| 51 | 
            +
            }
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            .pdf-success {
         | 
| 54 | 
            +
                background: linear-gradient(135deg, #d4edda 0%, #c3e6cb 100%);
         | 
| 55 | 
            +
                border: 1px solid #b1dfbb;
         | 
| 56 | 
            +
                color: #155724;
         | 
| 57 | 
            +
            }
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            .pdf-error {
         | 
| 60 | 
            +
                background: linear-gradient(135deg, #f8d7da 0%, #f5c6cb 100%);
         | 
| 61 | 
            +
                border: 1px solid #f1aeb5;
         | 
| 62 | 
            +
                color: #721c24;
         | 
| 63 | 
            +
            }
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            .pdf-info {
         | 
| 66 | 
            +
                background: linear-gradient(135deg, #d1ecf1 0%, #bee5eb 100%);
         | 
| 67 | 
            +
                border: 1px solid #9ec5d8;
         | 
| 68 | 
            +
                color: #0c5460;
         | 
| 69 | 
            +
            }
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            .rag-context {
         | 
| 72 | 
            +
                background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
         | 
| 73 | 
            +
                border-left: 4px solid #f59e0b;
         | 
| 74 | 
            +
                padding: 12px;
         | 
| 75 | 
            +
                margin: 12px 0;
         | 
| 76 | 
            +
                border-radius: 8px;
         | 
| 77 | 
            +
                font-size: 0.9rem;
         | 
| 78 | 
            +
            }
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            .thinking-section {
         | 
| 81 | 
            +
                background: rgba(0, 0, 0, 0.02);
         | 
| 82 | 
            +
                border: 1px solid rgba(0, 0, 0, 0.1);
         | 
| 83 | 
            +
                border-radius: 8px;
         | 
| 84 | 
            +
                padding: 12px;
         | 
| 85 | 
            +
                margin: 8px 0;
         | 
| 86 | 
            +
            }
         | 
| 87 | 
            +
            """
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            class SimpleTextSplitter:
         | 
| 90 | 
            +
                """ν
μ€νΈ λΆν κΈ°"""
         | 
| 91 | 
            +
                def __init__(self, chunk_size=800, chunk_overlap=100):
         | 
| 92 | 
            +
                    self.chunk_size = chunk_size
         | 
| 93 | 
            +
                    self.chunk_overlap = chunk_overlap
         | 
| 94 | 
            +
                
         | 
| 95 | 
            +
                def split_text(self, text: str) -> List[str]:
         | 
| 96 | 
            +
                    """ν
μ€νΈλ₯Ό μ²ν¬λ‘ λΆν """
         | 
| 97 | 
            +
                    chunks = []
         | 
| 98 | 
            +
                    sentences = text.split('. ')
         | 
| 99 | 
            +
                    current_chunk = ""
         | 
| 100 | 
            +
                    
         | 
| 101 | 
            +
                    for sentence in sentences:
         | 
| 102 | 
            +
                        if len(current_chunk) + len(sentence) < self.chunk_size:
         | 
| 103 | 
            +
                            current_chunk += sentence + ". "
         | 
| 104 | 
            +
                        else:
         | 
| 105 | 
            +
                            if current_chunk:
         | 
| 106 | 
            +
                                chunks.append(current_chunk.strip())
         | 
| 107 | 
            +
                            current_chunk = sentence + ". "
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                    if current_chunk:
         | 
| 110 | 
            +
                        chunks.append(current_chunk.strip())
         | 
| 111 | 
            +
                    
         | 
| 112 | 
            +
                    return chunks
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            class PDFRAGSystem:
         | 
| 115 | 
            +
                """PDF κΈ°λ° RAG μμ€ν
"""
         | 
| 116 | 
            +
                
         | 
| 117 | 
            +
                def __init__(self):
         | 
| 118 | 
            +
                    self.documents = {}
         | 
| 119 | 
            +
                    self.document_chunks = {}
         | 
| 120 | 
            +
                    self.embeddings_store = {}
         | 
| 121 | 
            +
                    self.text_splitter = SimpleTextSplitter(chunk_size=800, chunk_overlap=100)
         | 
| 122 | 
            +
                    
         | 
| 123 | 
            +
                    # μλ² λ© λͺ¨λΈ μ΄κΈ°ν
         | 
| 124 | 
            +
                    self.embedder = None
         | 
| 125 | 
            +
                    if ST_AVAILABLE:
         | 
| 126 | 
            +
                        try:
         | 
| 127 | 
            +
                            self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
         | 
| 128 | 
            +
                            print("β
 μλ² λ© λͺ¨λΈ λ‘λ μ±κ³΅")
         | 
| 129 | 
            +
                        except Exception as e:
         | 
| 130 | 
            +
                            print(f"β οΈ μλ² λ© λͺ¨λΈ λ‘λ μ€ν¨: {e}")
         | 
| 131 | 
            +
                
         | 
| 132 | 
            +
                def extract_text_from_pdf(self, pdf_path: str) -> Dict[str, Any]:
         | 
| 133 | 
            +
                    """PDFμμ ν
μ€νΈ μΆμΆ"""
         | 
| 134 | 
            +
                    if not PDF_AVAILABLE:
         | 
| 135 | 
            +
                        return {
         | 
| 136 | 
            +
                            "metadata": {
         | 
| 137 | 
            +
                                "title": "PDF Reader Not Available",
         | 
| 138 | 
            +
                                "file_name": os.path.basename(pdf_path),
         | 
| 139 | 
            +
                                "pages": 0
         | 
| 140 | 
            +
                            },
         | 
| 141 | 
            +
                            "full_text": "PDF μ²λ¦¬λ₯Ό μν΄ 'pip install pymupdf'λ₯Ό μ€νν΄μ£ΌμΈμ."
         | 
| 142 | 
            +
                        }
         | 
| 143 | 
            +
                    
         | 
| 144 | 
            +
                    try:
         | 
| 145 | 
            +
                        doc = fitz.open(pdf_path)
         | 
| 146 | 
            +
                        text_content = []
         | 
| 147 | 
            +
                        metadata = {
         | 
| 148 | 
            +
                            "title": doc.metadata.get("title", os.path.basename(pdf_path)),
         | 
| 149 | 
            +
                            "pages": len(doc),
         | 
| 150 | 
            +
                            "file_name": os.path.basename(pdf_path)
         | 
| 151 | 
            +
                        }
         | 
| 152 | 
            +
                        
         | 
| 153 | 
            +
                        for page_num, page in enumerate(doc):
         | 
| 154 | 
            +
                            text = page.get_text()
         | 
| 155 | 
            +
                            if text.strip():
         | 
| 156 | 
            +
                                text_content.append(text)
         | 
| 157 | 
            +
                        
         | 
| 158 | 
            +
                        doc.close()
         | 
| 159 | 
            +
                        
         | 
| 160 | 
            +
                        return {
         | 
| 161 | 
            +
                            "metadata": metadata,
         | 
| 162 | 
            +
                            "full_text": "\n\n".join(text_content)
         | 
| 163 | 
            +
                        }
         | 
| 164 | 
            +
                    except Exception as e:
         | 
| 165 | 
            +
                        raise Exception(f"PDF μ²λ¦¬ μ€λ₯: {str(e)}")
         | 
| 166 | 
            +
                
         | 
| 167 | 
            +
                def process_and_store_pdf(self, pdf_path: str, doc_id: str) -> Dict[str, Any]:
         | 
| 168 | 
            +
                    """PDF μ²λ¦¬ λ° μ μ₯"""
         | 
| 169 | 
            +
                    try:
         | 
| 170 | 
            +
                        # PDF ν
μ€νΈ μΆμΆ
         | 
| 171 | 
            +
                        pdf_data = self.extract_text_from_pdf(pdf_path)
         | 
| 172 | 
            +
                        
         | 
| 173 | 
            +
                        # ν
μ€νΈλ₯Ό μ²ν¬λ‘ λΆν 
         | 
| 174 | 
            +
                        chunks = self.text_splitter.split_text(pdf_data["full_text"])
         | 
| 175 | 
            +
                        
         | 
| 176 | 
            +
                        if not chunks:
         | 
| 177 | 
            +
                            print("Warning: No chunks created from PDF")
         | 
| 178 | 
            +
                            return {"success": False, "error": "No text content found in PDF"}
         | 
| 179 | 
            +
                        
         | 
| 180 | 
            +
                        print(f"Created {len(chunks)} chunks from PDF")
         | 
| 181 | 
            +
                        
         | 
| 182 | 
            +
                        # μ²ν¬ μ μ₯
         | 
| 183 | 
            +
                        self.document_chunks[doc_id] = chunks
         | 
| 184 | 
            +
                        
         | 
| 185 | 
            +
                        # μλ² λ© μμ± (μ νμ )
         | 
| 186 | 
            +
                        if self.embedder:
         | 
| 187 | 
            +
                            try:
         | 
| 188 | 
            +
                                print("Generating embeddings...")
         | 
| 189 | 
            +
                                embeddings = self.embedder.encode(chunks)
         | 
| 190 | 
            +
                                self.embeddings_store[doc_id] = embeddings
         | 
| 191 | 
            +
                                print(f"Generated {len(embeddings)} embeddings")
         | 
| 192 | 
            +
                            except Exception as e:
         | 
| 193 | 
            +
                                print(f"Warning: Failed to generate embeddings: {e}")
         | 
| 194 | 
            +
                                # μλ² λ© μ€ν¨ν΄λ κ³μ μ§ν
         | 
| 195 | 
            +
                        
         | 
| 196 | 
            +
                        # λ¬Έμ μ λ³΄ μ μ₯
         | 
| 197 | 
            +
                        self.documents[doc_id] = {
         | 
| 198 | 
            +
                            "metadata": pdf_data["metadata"],
         | 
| 199 | 
            +
                            "chunk_count": len(chunks),
         | 
| 200 | 
            +
                            "upload_time": datetime.now().isoformat()
         | 
| 201 | 
            +
                        }
         | 
| 202 | 
            +
                        
         | 
| 203 | 
            +
                        # λλ²κ·Έ: 첫 λ²μ§Έ μ²ν¬ μΆλ ₯
         | 
| 204 | 
            +
                        print(f"First chunk preview: {chunks[0][:200]}...")
         | 
| 205 | 
            +
                        
         | 
| 206 | 
            +
                        return {
         | 
| 207 | 
            +
                            "success": True,
         | 
| 208 | 
            +
                            "doc_id": doc_id,
         | 
| 209 | 
            +
                            "chunks": len(chunks),
         | 
| 210 | 
            +
                            "pages": pdf_data["metadata"]["pages"],
         | 
| 211 | 
            +
                            "title": pdf_data["metadata"]["title"]
         | 
| 212 | 
            +
                        }
         | 
| 213 | 
            +
                        
         | 
| 214 | 
            +
                    except Exception as e:
         | 
| 215 | 
            +
                        print(f"Error processing PDF: {e}")
         | 
| 216 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 217 | 
            +
                
         | 
| 218 | 
            +
                def search_relevant_chunks(self, query: str, doc_ids: List[str], top_k: int = 3) -> List[Dict]:
         | 
| 219 | 
            +
                    """κ΄λ ¨ μ²ν¬ κ²μ"""
         | 
| 220 | 
            +
                    all_relevant_chunks = []
         | 
| 221 | 
            +
                    
         | 
| 222 | 
            +
                    print(f"Searching chunks for query: '{query[:50]}...' in {len(doc_ids)} documents")
         | 
| 223 | 
            +
                    
         | 
| 224 | 
            +
                    # λ¨Όμ  λ¬Έμκ° μλμ§ νμΈ
         | 
| 225 | 
            +
                    for doc_id in doc_ids:
         | 
| 226 | 
            +
                        if doc_id not in self.document_chunks:
         | 
| 227 | 
            +
                            print(f"Warning: Document {doc_id} not found in chunks")
         | 
| 228 | 
            +
                            continue
         | 
| 229 | 
            +
                            
         | 
| 230 | 
            +
                        chunks = self.document_chunks[doc_id]
         | 
| 231 | 
            +
                        print(f"Document {doc_id} has {len(chunks)} chunks")
         | 
| 232 | 
            +
                        
         | 
| 233 | 
            +
                        # μλ² λ© κΈ°λ° κ²μ μλ
         | 
| 234 | 
            +
                        if self.embedder and doc_id in self.embeddings_store:
         | 
| 235 | 
            +
                            try:
         | 
| 236 | 
            +
                                query_embedding = self.embedder.encode([query])[0]
         | 
| 237 | 
            +
                                doc_embeddings = self.embeddings_store[doc_id]
         | 
| 238 | 
            +
                                
         | 
| 239 | 
            +
                                # μ½μ¬μΈ μ μ¬λ κ³μ° (μμ νκ²)
         | 
| 240 | 
            +
                                similarities = []
         | 
| 241 | 
            +
                                for i, emb in enumerate(doc_embeddings):
         | 
| 242 | 
            +
                                    try:
         | 
| 243 | 
            +
                                        query_norm = np.linalg.norm(query_embedding)
         | 
| 244 | 
            +
                                        emb_norm = np.linalg.norm(emb)
         | 
| 245 | 
            +
                                        
         | 
| 246 | 
            +
                                        if query_norm > 0 and emb_norm > 0:
         | 
| 247 | 
            +
                                            sim = np.dot(query_embedding, emb) / (query_norm * emb_norm)
         | 
| 248 | 
            +
                                            similarities.append(sim)
         | 
| 249 | 
            +
                                        else:
         | 
| 250 | 
            +
                                            similarities.append(0.0)
         | 
| 251 | 
            +
                                    except Exception as e:
         | 
| 252 | 
            +
                                        print(f"Error calculating similarity for chunk {i}: {e}")
         | 
| 253 | 
            +
                                        similarities.append(0.0)
         | 
| 254 | 
            +
                                
         | 
| 255 | 
            +
                                # μμ μ²ν¬ μ ν
         | 
| 256 | 
            +
                                if similarities:
         | 
| 257 | 
            +
                                    top_indices = np.argsort(similarities)[-min(top_k, len(similarities)):][::-1]
         | 
| 258 | 
            +
                                    
         | 
| 259 | 
            +
                                    for idx in top_indices:
         | 
| 260 | 
            +
                                        if idx < len(chunks):  # μΈλ±μ€ λ²μ νμΈ
         | 
| 261 | 
            +
                                            all_relevant_chunks.append({
         | 
| 262 | 
            +
                                                "content": chunks[idx],
         | 
| 263 | 
            +
                                                "doc_name": self.documents[doc_id]["metadata"]["file_name"],
         | 
| 264 | 
            +
                                                "similarity": similarities[idx]
         | 
| 265 | 
            +
                                            })
         | 
| 266 | 
            +
                                            print(f"Added chunk {idx} with similarity: {similarities[idx]:.3f}")
         | 
| 267 | 
            +
                            except Exception as e:
         | 
| 268 | 
            +
                                print(f"Error in embedding search: {e}")
         | 
| 269 | 
            +
                                # μλ² λ© μ€ν¨μ ν΄λ°±
         | 
| 270 | 
            +
                        
         | 
| 271 | 
            +
                        # μλ² λ©μ΄ μκ±°λ μ€ν¨ν κ²½μ° - κ°λ¨ν μ²μ Nκ° μ²ν¬ λ°ν
         | 
| 272 | 
            +
                        if not all_relevant_chunks:
         | 
| 273 | 
            +
                            print(f"Falling back to simple chunk selection for {doc_id}")
         | 
| 274 | 
            +
                            for i in range(min(top_k, len(chunks))):
         | 
| 275 | 
            +
                                all_relevant_chunks.append({
         | 
| 276 | 
            +
                                    "content": chunks[i],
         | 
| 277 | 
            +
                                    "doc_name": self.documents[doc_id]["metadata"]["file_name"],
         | 
| 278 | 
            +
                                    "similarity": 1.0 - (i * 0.1)  # μμλλ‘ κ°μ€μΉ
         | 
| 279 | 
            +
                                })
         | 
| 280 | 
            +
                                print(f"Added chunk {i} (fallback)")
         | 
| 281 | 
            +
                    
         | 
| 282 | 
            +
                    # μ μ¬λ κΈ°μ€ μ λ ¬
         | 
| 283 | 
            +
                    all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
         | 
| 284 | 
            +
                    
         | 
| 285 | 
            +
                    # μμ Kκ° μ ν
         | 
| 286 | 
            +
                    result = all_relevant_chunks[:top_k]
         | 
| 287 | 
            +
                    print(f"Returning {len(result)} chunks")
         | 
| 288 | 
            +
                    
         | 
| 289 | 
            +
                    # λλ²κ·Έ: 첫 λ²μ§Έ μ²ν¬ λ΄μ© μΌλΆ μΆλ ₯
         | 
| 290 | 
            +
                    if result:
         | 
| 291 | 
            +
                        print(f"First chunk preview: {result[0]['content'][:100]}...")
         | 
| 292 | 
            +
                    
         | 
| 293 | 
            +
                    return result
         | 
| 294 | 
            +
                
         | 
| 295 | 
            +
                def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> tuple:
         | 
| 296 | 
            +
                    """RAG ν둬ννΈ μμ± - 쿼리μ 컨ν
μ€νΈλ₯Ό λΆλ¦¬νμ¬ λ°ν"""
         | 
| 297 | 
            +
                    print(f"Creating RAG prompt for query: '{query[:50]}...' with docs: {doc_ids}")
         | 
| 298 | 
            +
                    
         | 
| 299 | 
            +
                    relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
         | 
| 300 | 
            +
                    
         | 
| 301 | 
            +
                    if not relevant_chunks:
         | 
| 302 | 
            +
                        print("No relevant chunks found - checking if documents exist")
         | 
| 303 | 
            +
                        # λ¬Έμκ° μλλ° μ²ν¬λ₯Ό λͺ» μ°Ύμ κ²½μ°, 첫 λ²μ§Έ μ²ν¬λΌλ μ¬μ©
         | 
| 304 | 
            +
                        for doc_id in doc_ids:
         | 
| 305 | 
            +
                            if doc_id in self.document_chunks and self.document_chunks[doc_id]:
         | 
| 306 | 
            +
                                print(f"Using first chunk from {doc_id} as fallback")
         | 
| 307 | 
            +
                                relevant_chunks = [{
         | 
| 308 | 
            +
                                    "content": self.document_chunks[doc_id][0],
         | 
| 309 | 
            +
                                    "doc_name": self.documents[doc_id]["metadata"]["file_name"],
         | 
| 310 | 
            +
                                    "similarity": 0.5
         | 
| 311 | 
            +
                                }]
         | 
| 312 | 
            +
                                break
         | 
| 313 | 
            +
                        
         | 
| 314 | 
            +
                        if not relevant_chunks:
         | 
| 315 | 
            +
                            print("No documents or chunks available")
         | 
| 316 | 
            +
                            return query, ""
         | 
| 317 | 
            +
                    
         | 
| 318 | 
            +
                    print(f"Using {len(relevant_chunks)} chunks for context")
         | 
| 319 | 
            +
                    
         | 
| 320 | 
            +
                    # 컨ν
μ€νΈ ꡬμ±
         | 
| 321 | 
            +
                    context_parts = []
         | 
| 322 | 
            +
                    context_parts.append("Based on the following document context, please answer the question below:")
         | 
| 323 | 
            +
                    context_parts.append("=" * 40)
         | 
| 324 | 
            +
                    
         | 
| 325 | 
            +
                    for i, chunk in enumerate(relevant_chunks, 1):
         | 
| 326 | 
            +
                        context_parts.append(f"\n[Document Reference {i} - {chunk['doc_name']}]")
         | 
| 327 | 
            +
                        # μ²ν¬ ν¬κΈ° μ¦κ°
         | 
| 328 | 
            +
                        content = chunk['content'][:1000] if len(chunk['content']) > 1000 else chunk['content']
         | 
| 329 | 
            +
                        context_parts.append(content)
         | 
| 330 | 
            +
                        print(f"Added chunk {i} ({len(content)} chars) with similarity: {chunk.get('similarity', 0):.3f}")
         | 
| 331 | 
            +
                    
         | 
| 332 | 
            +
                    context_parts.append("\n" + "=" * 40)
         | 
| 333 | 
            +
                    
         | 
| 334 | 
            +
                    context = "\n".join(context_parts)
         | 
| 335 | 
            +
                    enhanced_query = f"{context}\n\nQuestion: {query}\n\nAnswer based on the document context provided above:"
         | 
| 336 | 
            +
                    
         | 
| 337 | 
            +
                    print(f"Enhanced query length: {len(enhanced_query)} chars (original: {len(query)} chars)")
         | 
| 338 | 
            +
                    
         | 
| 339 | 
            +
                    return enhanced_query, context
         | 
| 340 | 
            +
             | 
| 341 | 
            +
            # Initialize model and RAG system
         | 
| 342 | 
            +
            model_id = "openai/gpt-oss-20b"
         | 
| 343 | 
            +
            pipe = pipeline(
         | 
| 344 | 
            +
                "text-generation",
         | 
| 345 | 
            +
                model=model_id,
         | 
| 346 | 
            +
                torch_dtype="auto",
         | 
| 347 | 
            +
                device_map="auto",
         | 
| 348 | 
            +
            )
         | 
| 349 | 
            +
             | 
| 350 | 
            +
            rag_system = PDFRAGSystem()
         | 
| 351 | 
            +
             | 
| 352 | 
            +
            # Global state for RAG
         | 
| 353 | 
            +
            rag_enabled = False
         | 
| 354 | 
            +
            selected_docs = []
         | 
| 355 | 
            +
            top_k_chunks = 3
         | 
| 356 | 
            +
            last_context = ""
         | 
| 357 | 
            +
             | 
| 358 | 
            +
            def format_conversation_history(chat_history):
         | 
| 359 | 
            +
                """Format conversation history for the model"""
         | 
| 360 | 
            +
                messages = []
         | 
| 361 | 
            +
                for item in chat_history:
         | 
| 362 | 
            +
                    role = item["role"]
         | 
| 363 | 
            +
                    content = item["content"]
         | 
| 364 | 
            +
                    if isinstance(content, list):
         | 
| 365 | 
            +
                        content = content[0]["text"] if content and "text" in content[0] else str(content)
         | 
| 366 | 
            +
                    messages.append({"role": role, "content": content})
         | 
| 367 | 
            +
                return messages
         | 
| 368 | 
            +
             | 
| 369 | 
            +
            @spaces.GPU()
         | 
| 370 | 
            +
            def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
         | 
| 371 | 
            +
                """Generate response with optional RAG enhancement"""
         | 
| 372 | 
            +
                global last_context, rag_enabled, selected_docs, top_k_chunks
         | 
| 373 | 
            +
                
         | 
| 374 | 
            +
                # Debug logging
         | 
| 375 | 
            +
                print(f"RAG Enabled: {rag_enabled}")
         | 
| 376 | 
            +
                print(f"Selected Docs: {selected_docs}")
         | 
| 377 | 
            +
                print(f"Available Docs: {list(rag_system.documents.keys())}")
         | 
| 378 | 
            +
                
         | 
| 379 | 
            +
                # Apply RAG if enabled
         | 
| 380 | 
            +
                if rag_enabled and selected_docs:
         | 
| 381 | 
            +
                    doc_ids = [doc.split(":")[0] for doc in selected_docs]
         | 
| 382 | 
            +
                    enhanced_input, context = rag_system.create_rag_prompt(input_data, doc_ids, top_k_chunks)
         | 
| 383 | 
            +
                    last_context = context
         | 
| 384 | 
            +
                    actual_input = enhanced_input
         | 
| 385 | 
            +
                    print(f"RAG Applied - Original: {len(input_data)} chars, Enhanced: {len(enhanced_input)} chars")
         | 
| 386 | 
            +
                else:
         | 
| 387 | 
            +
                    actual_input = input_data
         | 
| 388 | 
            +
                    last_context = ""
         | 
| 389 | 
            +
                    print("RAG Not Applied")
         | 
| 390 | 
            +
                
         | 
| 391 | 
            +
                # Prepare messages
         | 
| 392 | 
            +
                new_message = {"role": "user", "content": actual_input}
         | 
| 393 | 
            +
                system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
         | 
| 394 | 
            +
                processed_history = format_conversation_history(chat_history)
         | 
| 395 | 
            +
                messages = system_message + processed_history + [new_message]
         | 
| 396 | 
            +
                
         | 
| 397 | 
            +
                # Setup streaming
         | 
| 398 | 
            +
                streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)
         | 
| 399 | 
            +
                generation_kwargs = {
         | 
| 400 | 
            +
                    "max_new_tokens": max_new_tokens,
         | 
| 401 | 
            +
                    "do_sample": True,
         | 
| 402 | 
            +
                    "temperature": temperature,
         | 
| 403 | 
            +
                    "top_p": top_p,
         | 
| 404 | 
            +
                    "top_k": top_k,
         | 
| 405 | 
            +
                    "repetition_penalty": repetition_penalty,
         | 
| 406 | 
            +
                    "streamer": streamer
         | 
| 407 | 
            +
                }
         | 
| 408 | 
            +
                
         | 
| 409 | 
            +
                thread = Thread(target=pipe, args=(messages,), kwargs=generation_kwargs)
         | 
| 410 | 
            +
                thread.start()
         | 
| 411 | 
            +
                
         | 
| 412 | 
            +
                # Process streaming output
         | 
| 413 | 
            +
                thinking = ""
         | 
| 414 | 
            +
                final = ""
         | 
| 415 | 
            +
                started_final = False
         | 
| 416 | 
            +
                
         | 
| 417 | 
            +
                for chunk in streamer:
         | 
| 418 | 
            +
                    if not started_final:
         | 
| 419 | 
            +
                        if "assistantfinal" in chunk.lower():
         | 
| 420 | 
            +
                            split_parts = re.split(r'assistantfinal', chunk, maxsplit=1)
         | 
| 421 | 
            +
                            thinking += split_parts[0]
         | 
| 422 | 
            +
                            final += split_parts[1]
         | 
| 423 | 
            +
                            started_final = True
         | 
| 424 | 
            +
                        else:
         | 
| 425 | 
            +
                            thinking += chunk
         | 
| 426 | 
            +
                    else:
         | 
| 427 | 
            +
                        final += chunk
         | 
| 428 | 
            +
                    
         | 
| 429 | 
            +
                    clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
         | 
| 430 | 
            +
                    clean_final = final.strip()
         | 
| 431 | 
            +
                    
         | 
| 432 | 
            +
                    # Add RAG context indicator if used
         | 
| 433 | 
            +
                    rag_indicator = ""
         | 
| 434 | 
            +
                    if rag_enabled and selected_docs and last_context:
         | 
| 435 | 
            +
                        rag_indicator = "<div class='rag-context'>π RAG Context Applied</div>\n\n"
         | 
| 436 | 
            +
                    
         | 
| 437 | 
            +
                    formatted = f"{rag_indicator}<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
         | 
| 438 | 
            +
                    yield formatted
         | 
| 439 | 
            +
             | 
| 440 | 
            +
            def upload_pdf(file):
         | 
| 441 | 
            +
                """PDF νμΌ μ
λ‘λ μ²λ¦¬"""
         | 
| 442 | 
            +
                if file is None:
         | 
| 443 | 
            +
                    return (
         | 
| 444 | 
            +
                        gr.update(value="<div class='pdf-status pdf-info'>π νμΌμ μ νν΄μ£ΌμΈμ</div>"),
         | 
| 445 | 
            +
                        gr.update(choices=[])
         | 
| 446 | 
            +
                    )
         | 
| 447 | 
            +
                
         | 
| 448 | 
            +
                try:
         | 
| 449 | 
            +
                    # νμΌ ν΄μλ₯Ό IDλ‘ μ¬μ©
         | 
| 450 | 
            +
                    with open(file.name, 'rb') as f:
         | 
| 451 | 
            +
                        file_hash = hashlib.md5(f.read()).hexdigest()[:8]
         | 
| 452 | 
            +
                    
         | 
| 453 | 
            +
                    doc_id = f"doc_{file_hash}"
         | 
| 454 | 
            +
                    
         | 
| 455 | 
            +
                    # PDF μ²λ¦¬ λ° μ μ₯
         | 
| 456 | 
            +
                    result = rag_system.process_and_store_pdf(file.name, doc_id)
         | 
| 457 | 
            +
                    
         | 
| 458 | 
            +
                    if result["success"]:
         | 
| 459 | 
            +
                        status_html = f"""
         | 
| 460 | 
            +
                        <div class="pdf-status pdf-success">
         | 
| 461 | 
            +
                            β
 PDF μ
λ‘λ μλ£!<br>
         | 
| 462 | 
            +
                            π {result['title']}<br>
         | 
| 463 | 
            +
                            π {result['pages']} νμ΄μ§ | π {result['chunks']} μ²ν¬
         | 
| 464 | 
            +
                        </div>
         | 
| 465 | 
            +
                        """
         | 
| 466 | 
            +
                        
         | 
| 467 | 
            +
                        # λ¬Έμ λͺ©λ‘ μ
λ°μ΄νΈ
         | 
| 468 | 
            +
                        doc_choices = [f"{doc_id}: {rag_system.documents[doc_id]['metadata']['file_name']}" 
         | 
| 469 | 
            +
                                      for doc_id in rag_system.documents.keys()]
         | 
| 470 | 
            +
                        
         | 
| 471 | 
            +
                        return (
         | 
| 472 | 
            +
                            status_html,
         | 
| 473 | 
            +
                            gr.update(choices=doc_choices, value=doc_choices)
         | 
| 474 | 
            +
                        )
         | 
| 475 | 
            +
                    else:
         | 
| 476 | 
            +
                        return (
         | 
| 477 | 
            +
                            f"<div class='pdf-status pdf-error'>β μ€λ₯: {result['error']}</div>",
         | 
| 478 | 
            +
                            gr.update()
         | 
| 479 | 
            +
                        )
         | 
| 480 | 
            +
                        
         | 
| 481 | 
            +
                except Exception as e:
         | 
| 482 | 
            +
                    return (
         | 
| 483 | 
            +
                        f"<div class='pdf-status pdf-error'>β μ€λ₯: {str(e)}</div>",
         | 
| 484 | 
            +
                        gr.update()
         | 
| 485 | 
            +
                    )
         | 
| 486 | 
            +
             | 
| 487 | 
            +
            def clear_documents():
         | 
| 488 | 
            +
                """λ¬Έμ μ΄κΈ°ν"""
         | 
| 489 | 
            +
                global selected_docs
         | 
| 490 | 
            +
                rag_system.documents = {}
         | 
| 491 | 
            +
                rag_system.document_chunks = {}
         | 
| 492 | 
            +
                rag_system.embeddings_store = {}
         | 
| 493 | 
            +
                selected_docs = []
         | 
| 494 | 
            +
                
         | 
| 495 | 
            +
                return (
         | 
| 496 | 
            +
                    gr.update(value="<div class='pdf-status pdf-info'>ποΈ λͺ¨λ  λ¬Έμκ° μμ λμμ΅λλ€</div>"),
         | 
| 497 | 
            +
                    gr.update(choices=[], value=[])
         | 
| 498 | 
            +
                )
         | 
| 499 | 
            +
             | 
| 500 | 
            +
            def update_rag_settings(enable, docs, k):
         | 
| 501 | 
            +
                """Update RAG settings"""
         | 
| 502 | 
            +
                global rag_enabled, selected_docs, top_k_chunks
         | 
| 503 | 
            +
                rag_enabled = enable
         | 
| 504 | 
            +
                selected_docs = docs if docs else []
         | 
| 505 | 
            +
                top_k_chunks = k
         | 
| 506 | 
            +
                
         | 
| 507 | 
            +
                # Debug logging
         | 
| 508 | 
            +
                print(f"RAG Settings Updated - Enabled: {rag_enabled}, Docs: {selected_docs}, Top-K: {top_k_chunks}")
         | 
| 509 | 
            +
                
         | 
| 510 | 
            +
                status = "β
 Enabled" if enable and docs else "β Disabled"
         | 
| 511 | 
            +
                status_html = f"<div class='pdf-status pdf-info'>π RAG: <strong>{status}</strong></div>"
         | 
| 512 | 
            +
                
         | 
| 513 | 
            +
                # Show context preview if RAG is enabled
         | 
| 514 | 
            +
                if enable and docs:
         | 
| 515 | 
            +
                    preview = f"<div class='rag-context'>π Using {len(docs)} document(s) with {k} chunks per query</div>"
         | 
| 516 | 
            +
                    return gr.update(value=status_html), gr.update(value=preview, visible=True)
         | 
| 517 | 
            +
                else:
         | 
| 518 | 
            +
                    return gr.update(value=status_html), gr.update(value="", visible=False)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
            # Build the interface
         | 
| 521 | 
            +
            with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
         | 
| 522 | 
            +
                gr.Markdown("# π GPT-OSS-20B with PDF RAG System")
         | 
| 523 | 
            +
                gr.Markdown("Enhanced AI assistant with document-based context understanding")
         | 
| 524 | 
            +
                
         | 
| 525 | 
            +
                with gr.Row():
         | 
| 526 | 
            +
                    # Left sidebar for RAG controls
         | 
| 527 | 
            +
                    with gr.Column(scale=1):
         | 
| 528 | 
            +
                        with gr.Group(elem_classes="main-container"):
         | 
| 529 | 
            +
                            gr.Markdown("### π Document RAG Settings")
         | 
| 530 | 
            +
                            
         | 
| 531 | 
            +
                            pdf_upload = gr.File(
         | 
| 532 | 
            +
                                label="Upload PDF",
         | 
| 533 | 
            +
                                file_types=[".pdf"],
         | 
| 534 | 
            +
                                type="filepath"
         | 
| 535 | 
            +
                            )
         | 
| 536 | 
            +
                            
         | 
| 537 | 
            +
                            upload_status = gr.HTML(
         | 
| 538 | 
            +
                                value="<div class='pdf-status pdf-info'>π€ Upload a PDF to enable document-based answers</div>"
         | 
| 539 | 
            +
                            )
         | 
| 540 | 
            +
                            
         | 
| 541 | 
            +
                            document_list = gr.CheckboxGroup(
         | 
| 542 | 
            +
                                choices=[],
         | 
| 543 | 
            +
                                label="π Select Documents",
         | 
| 544 | 
            +
                                info="Choose documents to use as context"
         | 
| 545 | 
            +
                            )
         | 
| 546 | 
            +
                            
         | 
| 547 | 
            +
                            clear_btn = gr.Button("ποΈ Clear All Documents", size="sm", variant="secondary")
         | 
| 548 | 
            +
                            
         | 
| 549 | 
            +
                            enable_rag = gr.Checkbox(
         | 
| 550 | 
            +
                                label="β¨ Enable RAG",
         | 
| 551 | 
            +
                                value=False,
         | 
| 552 | 
            +
                                info="Use documents for context-aware responses"
         | 
| 553 | 
            +
                            )
         | 
| 554 | 
            +
                            
         | 
| 555 | 
            +
                            top_k_slider = gr.Slider(
         | 
| 556 | 
            +
                                minimum=1,
         | 
| 557 | 
            +
                                maximum=5,
         | 
| 558 | 
            +
                                value=3,
         | 
| 559 | 
            +
                                step=1,
         | 
| 560 | 
            +
                                label="Context Chunks",
         | 
| 561 | 
            +
                                info="Number of document chunks to use"
         | 
| 562 | 
            +
                            )
         | 
| 563 | 
            +
                            
         | 
| 564 | 
            +
                            # RAG status display
         | 
| 565 | 
            +
                            rag_status = gr.HTML(
         | 
| 566 | 
            +
                                value="<div class='pdf-status pdf-info'>π RAG: <strong>Disabled</strong></div>"
         | 
| 567 | 
            +
                            )
         | 
| 568 | 
            +
                            
         | 
| 569 | 
            +
                            context_preview = gr.HTML(value="", visible=False)
         | 
| 570 | 
            +
                    
         | 
| 571 | 
            +
                    # Right side for chat interface
         | 
| 572 | 
            +
                    with gr.Column(scale=3):
         | 
| 573 | 
            +
                        with gr.Group(elem_classes="main-container"):
         | 
| 574 | 
            +
                            # Create ChatInterface with custom function
         | 
| 575 | 
            +
                            chat_interface = gr.ChatInterface(
         | 
| 576 | 
            +
                                fn=generate_response,
         | 
| 577 | 
            +
                                additional_inputs=[
         | 
| 578 | 
            +
                                    gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
         | 
| 579 | 
            +
                                    gr.Textbox(
         | 
| 580 | 
            +
                                        label="System Prompt",
         | 
| 581 | 
            +
                                        value="You are a helpful assistant. Reasoning: medium",
         | 
| 582 | 
            +
                                        lines=4,
         | 
| 583 | 
            +
                                        placeholder="Change system prompt"
         | 
| 584 | 
            +
                                    ),
         | 
| 585 | 
            +
                                    gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
         | 
| 586 | 
            +
                                    gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
         | 
| 587 | 
            +
                                    gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
         | 
| 588 | 
            +
                                    gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
         | 
| 589 | 
            +
                                ],
         | 
| 590 | 
            +
                                examples=[
         | 
| 591 | 
            +
                                    [{"text": "Explain Newton laws clearly and concisely"}],
         | 
| 592 | 
            +
                                    [{"text": "Write a Python function to calculate the Fibonacci sequence"}],
         | 
| 593 | 
            +
                                    [{"text": "What are the benefits of open weight AI models"}],
         | 
| 594 | 
            +
                                ],
         | 
| 595 | 
            +
                                cache_examples=False,
         | 
| 596 | 
            +
                                type="messages",
         | 
| 597 | 
            +
                                description="""Chat with GPT-OSS-20B. Upload PDFs to enhance responses with document context. 
         | 
| 598 | 
            +
                                Click to view thinking process (default is on).""",
         | 
| 599 | 
            +
                                textbox=gr.Textbox(
         | 
| 600 | 
            +
                                    label="Query Input",
         | 
| 601 | 
            +
                                    placeholder="Type your prompt (RAG will be applied if enabled)"
         | 
| 602 | 
            +
                                ),
         | 
| 603 | 
            +
                                stop_btn="Stop Generation",
         | 
| 604 | 
            +
                                multimodal=False
         | 
| 605 | 
            +
                            )
         | 
| 606 | 
            +
                
         | 
| 607 | 
            +
                # Event handlers
         | 
| 608 | 
            +
                pdf_upload.upload(
         | 
| 609 | 
            +
                    fn=upload_pdf,
         | 
| 610 | 
            +
                    inputs=[pdf_upload],
         | 
| 611 | 
            +
                    outputs=[upload_status, document_list]
         | 
| 612 | 
            +
                )
         | 
| 613 | 
            +
                
         | 
| 614 | 
            +
                clear_btn.click(
         | 
| 615 | 
            +
                    fn=clear_documents,
         | 
| 616 | 
            +
                    outputs=[upload_status, document_list]
         | 
| 617 | 
            +
                )
         | 
| 618 | 
            +
                
         | 
| 619 | 
            +
                # Update RAG settings when changed
         | 
| 620 | 
            +
                enable_rag.change(
         | 
| 621 | 
            +
                    fn=update_rag_settings,
         | 
| 622 | 
            +
                    inputs=[enable_rag, document_list, top_k_slider],
         | 
| 623 | 
            +
                    outputs=[rag_status, context_preview]
         | 
| 624 | 
            +
                )
         | 
| 625 | 
            +
                
         | 
| 626 | 
            +
                document_list.change(
         | 
| 627 | 
            +
                    fn=update_rag_settings,
         | 
| 628 | 
            +
                    inputs=[enable_rag, document_list, top_k_slider],
         | 
| 629 | 
            +
                    outputs=[rag_status, context_preview]
         | 
| 630 | 
            +
                )
         | 
| 631 | 
            +
                
         | 
| 632 | 
            +
                top_k_slider.change(
         | 
| 633 | 
            +
                    fn=update_rag_settings,
         | 
| 634 | 
            +
                    inputs=[enable_rag, document_list, top_k_slider],
         | 
| 635 | 
            +
                    outputs=[rag_status, context_preview]
         | 
| 636 | 
            +
                )
         | 
| 637 | 
            +
             | 
| 638 | 
            +
            if __name__ == "__main__":
         | 
| 639 | 
            +
                demo.launch(share=True)
         | 
 
			
