|
|
""" |
|
|
Character Detection Module |
|
|
Integra el trabajo de Ana para detección de personajes mediante: |
|
|
1. Extracción de caras y embeddings |
|
|
2. Extracción de voces y embeddings |
|
|
3. Clustering con DBSCAN |
|
|
4. Generación de carpetas por personaje |
|
|
""" |
|
|
import cv2 |
|
|
import os |
|
|
import json |
|
|
import logging |
|
|
import shutil |
|
|
from pathlib import Path |
|
|
from sklearn.cluster import DBSCAN |
|
|
import numpy as np |
|
|
from typing import List, Dict, Any, Tuple |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
from deepface import DeepFace |
|
|
DEEPFACE_AVAILABLE = True |
|
|
except Exception as e: |
|
|
DEEPFACE_AVAILABLE = False |
|
|
logging.warning(f"DeepFace no disponible: {e}") |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class CharacterDetector: |
|
|
""" |
|
|
Detector de personajes que integra el trabajo de Ana. |
|
|
""" |
|
|
|
|
|
def __init__(self, video_path: str, output_base: Path, video_name: str = None): |
|
|
""" |
|
|
Args: |
|
|
video_path: Ruta al archivo de vídeo |
|
|
output_base: Directorio base para guardar resultados (ej: /tmp/temp/video_name) |
|
|
video_name: Nombre del vídeo (para construir URLs) |
|
|
""" |
|
|
self.video_path = video_path |
|
|
self.output_base = Path(output_base) |
|
|
self.output_base.mkdir(parents=True, exist_ok=True) |
|
|
self.video_name = video_name or self.output_base.name |
|
|
|
|
|
|
|
|
self.faces_dir = self.output_base / "faces" |
|
|
self.voices_dir = self.output_base / "voices" |
|
|
self.scenes_dir = self.output_base / "scenes" |
|
|
|
|
|
for d in [self.faces_dir, self.voices_dir, self.scenes_dir]: |
|
|
d.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
def extract_faces_embeddings(self, *, start_offset_sec: float = 3.0, extract_every_sec: float = 0.5, |
|
|
detector_backend: str = 'retinaface', min_face_area: int = 100, |
|
|
enforce_detection: bool = False) -> List[Dict[str, Any]]: |
|
|
""" |
|
|
Extrae caras del vídeo y calcula sus embeddings usando DeepFace directamente. |
|
|
|
|
|
Returns: |
|
|
Lista de dicts con {"embeddings": [...], "path": "..."} |
|
|
""" |
|
|
if not DEEPFACE_AVAILABLE: |
|
|
logger.warning("DeepFace no disponible, retornando lista vacía") |
|
|
return [] |
|
|
|
|
|
logger.info("Extrayendo caras del vídeo con DeepFace...") |
|
|
|
|
|
extract_every = float(extract_every_sec) |
|
|
video = cv2.VideoCapture(self.video_path) |
|
|
fps = int(video.get(cv2.CAP_PROP_FPS)) |
|
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
frame_interval = int(fps * extract_every) |
|
|
frame_count = 0 |
|
|
saved_count = 0 |
|
|
start_frame = int(max(0.0, start_offset_sec) * (fps if fps > 0 else 25)) |
|
|
|
|
|
embeddings_caras = [] |
|
|
|
|
|
logger.info(f"Total frames: {total_frames}, FPS: {fps}, Procesando cada {frame_interval} frames") |
|
|
|
|
|
while True: |
|
|
ret, frame = video.read() |
|
|
if not ret: |
|
|
break |
|
|
|
|
|
if frame_count < start_frame: |
|
|
frame_count += 1 |
|
|
continue |
|
|
|
|
|
if frame_count % frame_interval == 0: |
|
|
temp_path = self.faces_dir / "temp_frame.jpg" |
|
|
cv2.imwrite(str(temp_path), frame) |
|
|
|
|
|
try: |
|
|
|
|
|
|
|
|
face_objs = DeepFace.represent( |
|
|
img_path=str(temp_path), |
|
|
model_name='Facenet512', |
|
|
detector_backend=detector_backend, |
|
|
enforce_detection=enforce_detection |
|
|
) |
|
|
|
|
|
if face_objs: |
|
|
for i, face_obj in enumerate(face_objs): |
|
|
embedding = face_obj['embedding'] |
|
|
facial_area = face_obj.get('facial_area', {}) |
|
|
try: |
|
|
w = int(facial_area.get('w', 0)) |
|
|
h = int(facial_area.get('h', 0)) |
|
|
if w * h < int(min_face_area): |
|
|
continue |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
x = int(facial_area.get('x', 0)); y = int(facial_area.get('y', 0)) |
|
|
w = int(facial_area.get('w', 0)); h = int(facial_area.get('h', 0)) |
|
|
x2 = max(0, x); y2 = max(0, y) |
|
|
x3 = min(frame.shape[1], x + w); y3 = min(frame.shape[0], y + h) |
|
|
crop = frame[y2:y3, x2:x3] if (x3 > x2 and y3 > y2) else frame |
|
|
save_path = self.faces_dir / f"face_{saved_count:04d}.jpg" |
|
|
cv2.imwrite(str(save_path), crop) |
|
|
|
|
|
embeddings_caras.append({ |
|
|
"embeddings": embedding, |
|
|
"path": str(save_path), |
|
|
"frame": frame_count, |
|
|
"facial_area": facial_area |
|
|
}) |
|
|
saved_count += 1 |
|
|
|
|
|
if frame_count % (frame_interval * 10) == 0: |
|
|
logger.info(f"Progreso: frame {frame_count}/{total_frames}, caras detectadas: {saved_count}") |
|
|
|
|
|
except Exception as e: |
|
|
logger.debug(f"No se detectaron caras en frame {frame_count}: {e}") |
|
|
|
|
|
if temp_path.exists(): |
|
|
os.remove(temp_path) |
|
|
|
|
|
frame_count += 1 |
|
|
|
|
|
video.release() |
|
|
logger.info(f"✓ Caras extraídas: {len(embeddings_caras)}") |
|
|
return embeddings_caras |
|
|
|
|
|
def extract_voices_embeddings(self) -> List[Dict[str, Any]]: |
|
|
""" |
|
|
Extrae voces del vídeo y calcula sus embeddings. |
|
|
Por ahora retorna lista vacía (funcionalidad opcional). |
|
|
|
|
|
Returns: |
|
|
Lista de dicts con {"embeddings": [...], "path": "..."} |
|
|
""" |
|
|
logger.info("Extracción de voces deshabilitada temporalmente") |
|
|
return [] |
|
|
|
|
|
def extract_scenes_embeddings(self) -> List[Dict[str, Any]]: |
|
|
""" |
|
|
Extrae escenas clave del vídeo. |
|
|
Por ahora retorna lista vacía (funcionalidad opcional). |
|
|
|
|
|
Returns: |
|
|
Lista de dicts con {"embeddings": [...], "path": "..."} |
|
|
""" |
|
|
logger.info("Extracción de escenas deshabilitada temporalmente") |
|
|
return [] |
|
|
|
|
|
def cluster_faces(self, embeddings_caras: List[Dict], epsilon: float, min_samples: int) -> np.ndarray: |
|
|
""" |
|
|
Agrupa caras similares usando DBSCAN. |
|
|
Basado en get_face_clusters de Ana. |
|
|
|
|
|
Args: |
|
|
embeddings_caras: Lista de embeddings de caras |
|
|
epsilon: Parámetro eps de DBSCAN |
|
|
min_samples: Parámetro min_samples de DBSCAN |
|
|
|
|
|
Returns: |
|
|
Array de labels (cluster asignado a cada cara) |
|
|
""" |
|
|
if not embeddings_caras: |
|
|
return np.array([]) |
|
|
|
|
|
logger.info(f"Clustering {len(embeddings_caras)} caras con eps={epsilon}, min_samples={min_samples}") |
|
|
|
|
|
|
|
|
X = np.array([cara['embeddings'] for cara in embeddings_caras]) |
|
|
|
|
|
|
|
|
clustering = DBSCAN(eps=epsilon, min_samples=min_samples, metric='euclidean').fit(X) |
|
|
labels = clustering.labels_ |
|
|
|
|
|
|
|
|
n_clusters = len(set(labels)) - (1 if -1 in labels else 0) |
|
|
n_noise = list(labels).count(-1) |
|
|
|
|
|
logger.info(f"Clusters encontrados: {n_clusters}, Ruido: {n_noise}") |
|
|
return labels |
|
|
|
|
|
def create_character_folders(self, embeddings_caras: List[Dict], labels: np.ndarray) -> List[Dict[str, Any]]: |
|
|
""" |
|
|
Crea carpetas para cada personaje detectado y guarda las caras. |
|
|
|
|
|
Args: |
|
|
embeddings_caras: Lista de embeddings de caras |
|
|
labels: Array de labels de clustering |
|
|
|
|
|
Returns: |
|
|
Lista de personajes detectados con metadata |
|
|
""" |
|
|
characters = [] |
|
|
|
|
|
|
|
|
clusters = {} |
|
|
for idx, label in enumerate(labels): |
|
|
if label == -1: |
|
|
continue |
|
|
if label not in clusters: |
|
|
clusters[label] = [] |
|
|
clusters[label].append(idx) |
|
|
|
|
|
logger.info(f"Creando carpetas para {len(clusters)} personajes...") |
|
|
|
|
|
|
|
|
for cluster_id, face_indices in clusters.items(): |
|
|
char_id = f"char{cluster_id + 1}" |
|
|
char_dir = self.output_base / char_id |
|
|
char_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
for i, face_idx in enumerate(face_indices): |
|
|
src_path = Path(embeddings_caras[face_idx]['path']) |
|
|
dst_path = char_dir / f"face_{i:03d}.jpg" |
|
|
if src_path.exists(): |
|
|
shutil.copy(src_path, dst_path) |
|
|
|
|
|
|
|
|
if face_indices: |
|
|
representative_src = Path(embeddings_caras[face_indices[0]]['path']) |
|
|
representative_dst = char_dir / "representative.jpg" |
|
|
if representative_src.exists(): |
|
|
shutil.copy(representative_src, representative_dst) |
|
|
|
|
|
|
|
|
|
|
|
image_url = f"/files/{self.video_name}/{char_id}/representative.jpg" |
|
|
|
|
|
characters.append({ |
|
|
"id": char_id, |
|
|
"name": f"Personatge {cluster_id + 1}", |
|
|
"image_path": str(char_dir / "representative.jpg"), |
|
|
"image_url": image_url, |
|
|
"num_faces": len(face_indices), |
|
|
"folder": str(char_dir) |
|
|
}) |
|
|
|
|
|
logger.info(f"Carpetas creadas para {len(characters)} personajes") |
|
|
return characters |
|
|
|
|
|
def save_analysis_json(self, embeddings_caras: List[Dict], embeddings_voices: List[Dict], |
|
|
embeddings_escenas: List[Dict]) -> Path: |
|
|
""" |
|
|
Guarda el análisis completo en un archivo JSON. |
|
|
Similar al analysis.json de Ana. |
|
|
|
|
|
Returns: |
|
|
Path al archivo JSON guardado |
|
|
""" |
|
|
analysis_data = { |
|
|
"caras": embeddings_caras, |
|
|
"voices": embeddings_voices, |
|
|
"escenas": embeddings_escenas |
|
|
} |
|
|
|
|
|
analysis_path = self.output_base / "analysis.json" |
|
|
|
|
|
try: |
|
|
with open(analysis_path, "w", encoding="utf-8") as f: |
|
|
json.dump(analysis_data, f, indent=2, ensure_ascii=False) |
|
|
logger.info(f"Analysis JSON guardado: {analysis_path}") |
|
|
except Exception as e: |
|
|
logger.warning(f"Error al guardar analysis JSON: {e}") |
|
|
|
|
|
return analysis_path |
|
|
|
|
|
def detect_characters(self, epsilon: float = 0.5, min_cluster_size: int = 2, |
|
|
*, start_offset_sec: float = 3.0, extract_every_sec: float = 0.5) -> Tuple[List[Dict], Path, np.ndarray, List[Dict[str, Any]]]: |
|
|
""" |
|
|
Pipeline completo de detección de personajes. |
|
|
|
|
|
Args: |
|
|
epsilon: Parámetro epsilon para DBSCAN |
|
|
min_cluster_size: Tamaño mínimo de cluster |
|
|
|
|
|
Returns: |
|
|
Tuple de (lista de personajes, path al analysis.json) |
|
|
""" |
|
|
|
|
|
embeddings_caras = self.extract_faces_embeddings(start_offset_sec=start_offset_sec, extract_every_sec=extract_every_sec) |
|
|
|
|
|
|
|
|
embeddings_voices = self.extract_voices_embeddings() |
|
|
|
|
|
|
|
|
embeddings_escenas = self.extract_scenes_embeddings() |
|
|
|
|
|
|
|
|
analysis_path = self.save_analysis_json(embeddings_caras, embeddings_voices, embeddings_escenas) |
|
|
|
|
|
|
|
|
labels = self.cluster_faces(embeddings_caras, epsilon, min_cluster_size) |
|
|
|
|
|
|
|
|
characters = self.create_character_folders(embeddings_caras, labels) |
|
|
|
|
|
return characters, analysis_path, labels, embeddings_caras |
|
|
|
|
|
|
|
|
|
|
|
def detect_characters_from_video(video_path: str, output_base: str, |
|
|
epsilon: float = 0.5, min_cluster_size: int = 2, |
|
|
video_name: str = None, |
|
|
*, start_offset_sec: float = 3.0, extract_every_sec: float = 0.5) -> Dict[str, Any]: |
|
|
""" |
|
|
Función de alto nivel para detectar personajes en un vídeo. |
|
|
|
|
|
Args: |
|
|
video_path: Ruta al vídeo |
|
|
output_base: Directorio base para guardar resultados |
|
|
epsilon: Parámetro epsilon para DBSCAN |
|
|
min_cluster_size: Tamaño mínimo de cluster |
|
|
video_name: Nombre del vídeo (para construir URLs) |
|
|
|
|
|
Returns: |
|
|
Dict con resultados: {"characters": [...], "analysis_path": "..."} |
|
|
""" |
|
|
detector = CharacterDetector(video_path, Path(output_base), video_name=video_name) |
|
|
characters, analysis_path, labels, embeddings_caras = detector.detect_characters(epsilon, min_cluster_size, |
|
|
start_offset_sec=start_offset_sec, |
|
|
extract_every_sec=extract_every_sec) |
|
|
|
|
|
return { |
|
|
"characters": characters, |
|
|
"analysis_path": str(analysis_path), |
|
|
"num_characters": len(characters), |
|
|
"face_labels": labels.tolist() if isinstance(labels, np.ndarray) else list(labels), |
|
|
"num_face_embeddings": len(embeddings_caras) |
|
|
} |
|
|
|