engine / vision_tools.py
VeuReu's picture
Upload 6 files
104fa1a verified
raw
history blame
17.5 kB
# vision_tools.py
# -----------------------------------------------------------------------------
# Veureu — VISION utilities (self-contained)
# - Image processing and analysis
# - Object detection and recognition
# - Face detection and recognition
# - Scene description
# - Montage sequence analysis
# -----------------------------------------------------------------------------
from __future__ import annotations
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import json
import logging
import math
import os
import shlex
import subprocess
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from pyannote.audio import Pipeline as PyannotePipeline
from speechbrain.inference.speaker import SpeakerRecognition
from pydub import AudioSegment
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
import os, base64, requests, subprocess, contextlib, time
from transformers import AutoProcessor, LlavaForConditionalGeneration
from PIL import Image
from audio_tools import process_audio_for_video
from llm_router import load_yaml, LLMRouter
import cv2
try:
import face_recognition # type: ignore
except Exception:
face_recognition = None # type: ignore
# FaceRecognizer not available in this deployment
DFRecognizer = None # type: ignore
try:
from deepface import DeepFace
except ImportError:
DeepFace = None
import easyocr
# -------------------------------- Logging ------------------------------------
log = logging.getLogger("audio_tools")
if not log.handlers:
h = logging.StreamHandler()
h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
log.addHandler(h)
log.setLevel(logging.INFO)
# ============================ UTILS ===========================================
def load_config(path: str = "configs/config_veureu.yaml") -> Dict[str, Any]:
p = Path(path)
if not p.exists():
log.warning("Config file not found: %s (using defaults)", path)
return {}
try:
import yaml
cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
cfg["__path__"] = str(p)
return cfg
except Exception as e:
log.error("Failed to read YAML config: %s", e)
return {}
# ---------------------------- IMAGE EMBEDDING ----------------------------------
class FaceOfImageEmbedding:
"""Preferred backend: `face_recognition`; fallback: DeepFace via libs.face_utils."""
def __init__(self, deepface_model: str = 'Facenet512'):
self.use_fr = face_recognition is not None
self.df = None
if not self.use_fr and DFRecognizer is not None:
try:
self.df = DFRecognizer(model_name=deepface_model)
log.info("Using DeepFace (%s) as face embedding backend.", deepface_model)
except Exception as e:
log.warning("Failed to initialize DeepFace: %s", e)
elif self.use_fr:
log.info("Using face_recognition as face embedding backend.")
else:
log.error("No face embedding backend available.")
def encode_image(self, image_path: Path) -> Optional[List[float]]:
import numpy as np
try:
if self.use_fr:
img = face_recognition.load_image_file(str(image_path)) # type: ignore
encs = face_recognition.face_encodings(img)
if encs:
# Normalizar cada embedding a norma 1
embeddings = [(e / np.linalg.norm(e)).astype(float).tolist() for e in encs]
return embeddings
return None
if self.df is not None:
emb = self.df.get_face_embedding_from_path(str(image_path))
if emb is None:
return None
# Convertir a numpy array y normalizar
emb = np.array(emb, dtype=float)
emb = emb / np.linalg.norm(emb)
return emb.tolist()
except Exception as e:
log.debug("Fallo embedding cara %s: %s", image_path, e)
return None
class FaceAnalyzer:
"""Wrapper sencillo para DeepFace que obtiene edad y género de una imagen."""
def __init__(self, actions=None):
if actions is None:
actions = ["age", "gender"]
self.actions = actions
if DeepFace is None:
log.warning("DeepFace not available - FaceAnalyzer will return None")
def analyze_image(self, img_path: str) -> Optional[Dict[str, Any]]:
if DeepFace is None:
return None
try:
result = DeepFace.analyze(img_path=img_path, actions=self.actions)
# Si DeepFace devuelve una lista (varias caras), tomamos la primera
if isinstance(result, list) and len(result) > 0:
result = result[0]
# Ahora sí podemos acceder a 'age' y 'dominant_gender'
return {
"age": result.get("age", "unknown"),
"gender": result.get("dominant_gender", "unknown")
}
except Exception as e:
log.warning("No se pudo analizar la imagen %s: %s", img_path, e)
return None
# ----------------------------------- FUNCTIONS -------------------------------------
def map_identities_per_second(frames_per_second, intervals):
for seg in intervals:
seg_start = seg["start"]
seg_end = seg["end"]
# recolectar identidades de los frames en el rango del segmento
identities = []
for f in frames_per_second:
if seg_start <= f["start"] <= seg_end:
for face in f.get("faces", []):
identities.append(face)
# contar apariciones
seg["counts"] = dict(Counter(identities))
return intervals
def _split_montage(img: np.ndarray, n: int, cfg: Dict[str, Any]) -> List[np.ndarray]:
vd = cfg.get('vision_describer', {})
montage_cfg = vd.get('montage', {})
mode = montage_cfg.get('split_mode', 'horizontal') # 'horizontal'|'vertical'|'grid'
h, w = img.shape[:2]
tiles: List[np.ndarray] = []
if mode == 'vertical':
tile_h = h // n
for i in range(n):
y0 = i * tile_h; y1 = h if i == n-1 else (i+1) * tile_h
tiles.append(img[y0:y1, 0:w])
return tiles
if mode == 'grid':
rows = int(montage_cfg.get('rows', 1) or 1)
cols = int(montage_cfg.get('cols', n) or n)
assert rows * cols >= n, "grid rows*cols must be >= n"
tile_h = h // rows; tile_w = w // cols
k = 0
for r in range(rows):
for c in range(cols):
if k >= n: break
y0, y1 = r*tile_h, h if (r==rows-1) else (r+1)*tile_h
x0, x1 = c*tile_w, w if (c==cols-1) else (c+1)*tile_w
tiles.append(img[y0:y1, x0:x1]); k += 1
return tiles
tile_w = w // n
for i in range(n):
x0 = i * tile_w; x1 = w if i == n-1 else (i+1) * tile_w
tiles.append(img[0:h, x0:x1])
return tiles
def generar_montage(frame_paths: List[str], output_dir: str) -> None:
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
montage_path = ""
if frame_paths:
imgs = [cv2.imread(kf) for kf in frame_paths if os.path.exists(kf)]
imgs = [img for img in imgs if img is not None]
print(f"Se encontraron {len(imgs)} imágenes para el montaje.")
if imgs:
h = max(img.shape[0] for img in imgs) # altura máxima
imgs_resized = [cv2.resize(img, (int(img.shape[1]*h/img.shape[0]), h)) for img in imgs]
montage = cv2.hconcat(imgs_resized)
montage_path = os.path.join(output_dir, "keyframes_montage.jpg")
print(f"Guardando montaje en: {montage_path}")
cv2.imwrite(montage_path, montage)
print("Montaje guardado.")
else:
print("No se encontraron imágenes válidas para el montaje.")
return montage_path
def describe_montage_sequence(
montage_path: str,
n: int,
informacion,
face_identities,
*,
config_path: str = 'config.yaml'
) -> Dict[str, Any]:
"""Describe each sub-image of a montage using remote Space (svision) via LLMRouter.
Returns a list of descriptions, one per tile.
"""
img = cv2.imread(montage_path, cv2.IMREAD_COLOR)
if img is None:
raise RuntimeError(f"No se puede leer la imagen: {montage_path}")
# Load engine config and split montage into tiles
cfg = load_yaml(config_path)
tiles = _split_montage(img, n, cfg)
if len(tiles) < n:
raise RuntimeError(f"Se produjeron {len(tiles)} tiles, se esperaban {n}")
# Persist tiles as temporary images next to montage
out_dir = Path(montage_path).parent
frame_paths: List[str] = []
for i, t in enumerate(tiles):
p = out_dir / f"tile_{i:03d}.jpg"
cv2.imwrite(str(p), t)
frame_paths.append(str(p))
# Prepare context and call remote vision describer
context = {
"informacion": informacion,
"face_identities": sorted(list(face_identities or set())),
}
model_name = (cfg.get("models", {}).get("vision") or "salamandra-vision")
router = LLMRouter(cfg)
descs = router.vision_describe(frame_paths, context=context, model=model_name)
return descs
# --------------------------- IMAGES EXTRACTION -----------------------------
def keyframe_conditional_extraction_ana(
video_path,
output_dir,
threshold=30.0,
offset_frames=10
):
"""
Detecta cambios de escena en un vídeo, guarda un fotograma por cada cambio,
devuelve intervalos con start y end basados en los tiempos de los keyframes
y genera un montaje con todos los keyframes.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=threshold))
video_manager.start()
scene_manager.detect_scenes(video_manager)
scene_list = scene_manager.get_scene_list()
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
video_duration = total_frames / fps
keyframes = []
for i, (start_time, end_time) in enumerate(scene_list):
frame_number = int(start_time.get_frames()) + offset_frames
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if ret:
ts = frame_number / fps
frame_path = os.path.join(output_dir, f"scene_{i+1:03d}.jpg")
cv2.imwrite(frame_path, frame)
keyframes.append({
"index": i+1,
"time": round(ts, 2),
"path": frame_path
})
cap.release()
video_manager.release()
# Construimos intervalos con start y end
intervals = []
for i, kf in enumerate(keyframes):
start = kf["time"]
if i < len(keyframes) - 1:
end = keyframes[i+1]["time"]
else:
end = video_duration # última escena hasta el final
intervals.append({
"index": kf["index"],
"start": start,
"end": round(end, 2),
"path": kf["path"]
})
return intervals
def keyframe_every_second(
video_path: str,
output_dir: str = ".",
max_frames: Optional[int] = 10000,
) -> List[dict]:
"""
Extrae un fotograma por cada segundo del video.
Returns:
List[dict]: Cada elemento es {"index", "start", "end", "path"}
"""
out_dir = Path(output_dir)
out_dir.mkdir(parents=True, exist_ok=True)
cap = cv2.VideoCapture(str(video_path))
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps
frames: List[dict] = []
idx = 0
sec = 0.0
while sec <= duration:
frame_number = int(sec * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if not ret:
break
timestamp = frame_number / fps
frame_path = out_dir / f"frame_per_second{idx:03d}.jpg"
cv2.imwrite(str(frame_path), frame)
frames.append({
"index": idx + 1,
"start": round(timestamp, 2),
"end": None, # lo completamos después
"path": str(frame_path),
})
idx += 1
sec += 1.0
if max_frames and idx >= max_frames:
break
cap.release()
# Completar los "end" con el inicio del siguiente frame
for i in range(len(frames)):
if i < len(frames) - 1:
frames[i]["end"] = frames[i+1]["start"]
else:
frames[i]["end"] = round(duration, 2)
return frames
from collections import Counter, defaultdict
# --------------------------- FRAMES PROCESSING -----------------------------
def process_frames(
frames: List[dict], # cada elemento es {"index", "start", "end", "path"}
config: dict,
face_col=None,
embedding_model=None,
) -> Tuple[List[dict], List[int]]:
"""
Procesa keyframes:
- Detecta caras
- Genera embeddings con FaceEmbedding
- Opcionalmente compara con face_col (KNN top-3)
- Opcionalmente ejecuta OCR
"""
frame_results = []
# Crear embedding_model si no se pasa
if embedding_model is None:
embedding_model = FaceOfImageEmbedding()
for idx, frame in enumerate(frames):
frame_path = frame["path"]
try:
raw_faces = embedding_model.encode_image(Path(frame_path))
except Exception as e:
print(f"Error procesando {frame_path}: {e}")
raw_faces = None
faces = []
if raw_faces is not None:
if isinstance(raw_faces[0], list): # múltiples
for e in raw_faces:
faces.append({"embedding": e})
else: # uno solo
faces.append({"embedding": raw_faces})
faces_detected = []
for f in faces:
embedding = f.get("embedding")
identity = "Unknown"
knn = []
if face_col is not None and embedding is not None:
try:
num_embeddings = face_col.count()
if num_embeddings < 1:
knn = []
identity = "Unknown"
else:
n_results = min(3, num_embeddings)
q = face_col.query(
query_embeddings=[embedding],
n_results=n_results,
include=["metadatas", "distances"]
)
knn = []
metas = q.get("metadatas", [[]])[0]
dists = q.get("distances", [[]])[0]
for meta, dist in zip(metas, dists):
person_id = meta.get("identity", "Unknown") if isinstance(meta, dict) else "Unknown"
knn.append({"identity": person_id, "distance": float(dist)})
if knn and knn[0]["distance"] < 0.6:
identity = knn[0]["identity"]
else:
identity = "Unknown"
except Exception as e:
print(f"Face KNN failed: {e}")
knn = []
identity = "Unknown"
faces_detected.append(identity)
use_easyocr = True
if use_easyocr:
try:
reader = easyocr.Reader(['en', 'es'], gpu=True) # Cambiar gpu=False si no hay GPU
results = reader.readtext(frame_path)
ocr_text_easyocr = " ".join([text for _, text, _ in results]).strip()
except Exception as e:
print(f"OCR error: {e}")
frame_results.append({
"id": frame["index"],
"start": frame["start"],
"end": frame["end"],
"image_path": frame_path,
"faces": faces_detected,
"ocr": ocr_text_easyocr,
})
return frame_results
if __name__ == "__main__":
import argparse
ap = argparse.ArgumentParser(description="Veureu — Audio tools (self-contained)")
ap.add_argument("--video", required=True)
ap.add_argument("--out", default="results")
ap.add_argument("--config", default="configs/config_veureu.yaml")
args = ap.parse_args()
# Lightweight config loader (only for sample run)
import yaml
cfg = {}
p = Path(args.config)
if p.exists():
cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
out_dir = Path(args.out) / Path(args.video).stem
out_dir.mkdir(parents=True, exist_ok=True)
segs, srt = process_audio_for_video(args.video, out_dir, cfg, voice_collection=None)
print(json.dumps({
"segments": len(segs),
"srt": srt
}, indent=2, ensure_ascii=False))