Upload 2 files
Browse files- api.py +121 -124
- pipelines/audiodescription.py +147 -0
api.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
from pipelines.audiodescription import generate as ad_generate
|
| 2 |
-
|
| 3 |
from __future__ import annotations
|
| 4 |
from fastapi import FastAPI, UploadFile, File, Form, BackgroundTasks, HTTPException
|
| 5 |
from fastapi.responses import JSONResponse, FileResponse
|
|
@@ -20,6 +18,8 @@ from narration_system import NarrationSystem
|
|
| 20 |
from llm_router import load_yaml, LLMRouter
|
| 21 |
from character_detection import detect_characters_from_video
|
| 22 |
|
|
|
|
|
|
|
| 23 |
app = FastAPI(title="Veureu Engine API", version="0.2.0")
|
| 24 |
app.add_middleware(
|
| 25 |
CORSMiddleware,
|
|
@@ -221,125 +221,122 @@ def process_video_job(job_id: str):
|
|
| 221 |
"characters": characters,
|
| 222 |
"num_characters": len(characters),
|
| 223 |
"analysis_path": analysis_path,
|
| 224 |
-
"base_dir": str(base)
|
| 225 |
-
}
|
| 226 |
-
job["status"] = JobStatus.DONE
|
| 227 |
-
|
| 228 |
-
print(f"[{job_id}] DEBUG - job['results'] guardado: {job['results']}")
|
| 229 |
-
|
| 230 |
-
except Exception as e_detect:
|
| 231 |
-
# Si falla la detección, intentar modo fallback
|
| 232 |
-
import traceback
|
| 233 |
-
print(f"[{job_id}] ✗ Error en detección: {e_detect}")
|
| 234 |
-
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
|
| 235 |
-
print(f"[{job_id}] Usando modo fallback (carpetas vacías)")
|
| 236 |
-
|
| 237 |
-
# Crear carpetas básicas como fallback
|
| 238 |
-
for sub in ("sources", "faces", "voices", "backgrounds"):
|
| 239 |
-
(base / sub).mkdir(parents=True, exist_ok=True)
|
| 240 |
-
|
| 241 |
-
# Guardar resultados de fallback y luego marcar como completado
|
| 242 |
-
job["results"] = {
|
| 243 |
-
"characters": [],
|
| 244 |
-
"num_characters": 0,
|
| 245 |
-
"temp_dirs": {
|
| 246 |
-
"sources": str(base / "sources"),
|
| 247 |
-
"faces": str(base / "faces"),
|
| 248 |
-
"voices": str(base / "voices"),
|
| 249 |
-
"backgrounds": str(base / "backgrounds"),
|
| 250 |
-
},
|
| 251 |
-
"warning": f"Detección falló, usando modo fallback: {str(e_detect)}"
|
| 252 |
-
}
|
| 253 |
-
job["status"] = JobStatus.DONE
|
| 254 |
-
|
| 255 |
-
print(f"[{job_id}] ✓ Job completado exitosamente")
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
}
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
)
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
"
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
if __name__ == "__main__":
|
| 345 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
from fastapi import FastAPI, UploadFile, File, Form, BackgroundTasks, HTTPException
|
| 3 |
from fastapi.responses import JSONResponse, FileResponse
|
|
|
|
| 18 |
from llm_router import load_yaml, LLMRouter
|
| 19 |
from character_detection import detect_characters_from_video
|
| 20 |
|
| 21 |
+
from pipelines.audiodescription import generate as ad_generate
|
| 22 |
+
|
| 23 |
app = FastAPI(title="Veureu Engine API", version="0.2.0")
|
| 24 |
app.add_middleware(
|
| 25 |
CORSMiddleware,
|
|
|
|
| 221 |
"characters": characters,
|
| 222 |
"num_characters": len(characters),
|
| 223 |
"analysis_path": analysis_path,
|
| 224 |
+
"base_dir": str(base)
|
| 225 |
+
}
|
| 226 |
+
job["status"] = JobStatus.DONE
|
| 227 |
+
|
| 228 |
+
print(f"[{job_id}] DEBUG - job['results'] guardado: {job['results']}")
|
| 229 |
+
|
| 230 |
+
except Exception as e_detect:
|
| 231 |
+
# Si falla la detección, intentar modo fallback
|
| 232 |
+
import traceback
|
| 233 |
+
print(f"[{job_id}] ✗ Error en detección: {e_detect}")
|
| 234 |
+
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
|
| 235 |
+
print(f"[{job_id}] Usando modo fallback (carpetas vacías)")
|
| 236 |
+
|
| 237 |
+
# Crear carpetas básicas como fallback
|
| 238 |
+
for sub in ("sources", "faces", "voices", "backgrounds"):
|
| 239 |
+
(base / sub).mkdir(parents=True, exist_ok=True)
|
| 240 |
+
|
| 241 |
+
# Guardar resultados de fallback y luego marcar como completado
|
| 242 |
+
job["results"] = {
|
| 243 |
+
"characters": [],
|
| 244 |
+
"num_characters": 0,
|
| 245 |
+
"temp_dirs": {
|
| 246 |
+
"sources": str(base / "sources"),
|
| 247 |
+
"faces": str(base / "faces"),
|
| 248 |
+
"voices": str(base / "voices"),
|
| 249 |
+
"backgrounds": str(base / "backgrounds"),
|
| 250 |
+
},
|
| 251 |
+
"warning": f"Detección falló, usando modo fallback: {str(e_detect)}"
|
| 252 |
+
}
|
| 253 |
+
job["status"] = JobStatus.DONE
|
| 254 |
+
|
| 255 |
+
print(f"[{job_id}] ✓ Job completado exitosamente")
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@app.post("/generate_audiodescription")
|
| 259 |
+
async def generate_audiodescription(video: UploadFile = File(...)):
|
| 260 |
+
try:
|
| 261 |
+
import uuid
|
| 262 |
+
job_id = str(uuid.uuid4())
|
| 263 |
+
vid_name = video.filename or f"video_{job_id}.mp4"
|
| 264 |
+
base = TEMP_ROOT / Path(vid_name).stem
|
| 265 |
+
|
| 266 |
+
base.mkdir(parents=True, exist_ok=True)
|
| 267 |
+
# Save temp mp4
|
| 268 |
+
video_path = base / vid_name
|
| 269 |
+
with open(video_path, "wb") as f:
|
| 270 |
+
f.write(await video.read())
|
| 271 |
+
|
| 272 |
+
# Run MVP pipeline
|
| 273 |
+
result = ad_generate(str(video_path), base)
|
| 274 |
+
|
| 275 |
+
return {
|
| 276 |
+
"status": "done",
|
| 277 |
+
"results": {
|
| 278 |
+
"une_srt": result.get("une_srt", ""),
|
| 279 |
+
"free_text": result.get("free_text", ""),
|
| 280 |
+
"artifacts": result.get("artifacts", {}),
|
| 281 |
+
},
|
| 282 |
+
}
|
| 283 |
+
except Exception as e:
|
| 284 |
+
import traceback
|
| 285 |
+
print(f"/generate_audiodescription error: {e}\n{traceback.format_exc()}")
|
| 286 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 287 |
+
|
| 288 |
+
@app.post("/load_casting")
|
| 289 |
+
async def load_casting(
|
| 290 |
+
faces_dir: str = Form("identities/faces"),
|
| 291 |
+
voices_dir: str = Form("identities/voices"),
|
| 292 |
+
db_dir: str = Form("chroma_db"),
|
| 293 |
+
drop_collections: bool = Form(False),
|
| 294 |
+
):
|
| 295 |
+
client = ensure_chroma(Path(db_dir))
|
| 296 |
+
n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
|
| 297 |
+
n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
|
| 298 |
+
return {"ok": True, "faces": n_faces, "voices": n_voices}
|
| 299 |
+
|
| 300 |
+
@app.post("/refine_narration")
|
| 301 |
+
async def refine_narration(
|
| 302 |
+
dialogues_srt: str = Form(...),
|
| 303 |
+
frame_descriptions_json: str = Form("[]"),
|
| 304 |
+
config_path: str = Form("config.yaml"),
|
| 305 |
+
):
|
| 306 |
+
cfg = load_yaml(config_path)
|
| 307 |
+
frames = json.loads(frame_descriptions_json)
|
| 308 |
+
model_name = cfg.get("narration", {}).get("model", "salamandra-instruct")
|
| 309 |
+
use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", []))
|
| 310 |
+
|
| 311 |
+
if use_remote:
|
| 312 |
+
router = LLMRouter(cfg)
|
| 313 |
+
system_msg = (
|
| 314 |
+
"Eres un sistema de audiodescripción que cumple UNE-153010. "
|
| 315 |
+
"Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. "
|
| 316 |
+
"Devuelve JSON con {narrative_text, srt_text}."
|
| 317 |
+
)
|
| 318 |
+
prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False)
|
| 319 |
+
try:
|
| 320 |
+
txt = router.instruct(prompt=prompt, system=system_msg, model=model_name)
|
| 321 |
+
out = {}
|
| 322 |
+
try:
|
| 323 |
+
out = json.loads(txt)
|
| 324 |
+
except Exception:
|
| 325 |
+
out = {"narrative_text": txt, "srt_text": ""}
|
| 326 |
+
return {
|
| 327 |
+
"narrative_text": out.get("narrative_text", ""),
|
| 328 |
+
"srt_text": out.get("srt_text", ""),
|
| 329 |
+
"approved": True,
|
| 330 |
+
"critic_feedback": "",
|
| 331 |
+
}
|
| 332 |
+
except Exception:
|
| 333 |
+
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("narration_une_guidelines_path", "UNE_153010.txt"))
|
| 334 |
+
res = ns.run(dialogues_srt, frames)
|
| 335 |
+
return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback}
|
| 336 |
+
|
| 337 |
+
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
|
| 338 |
+
out = ns.run(dialogues_srt, frames)
|
| 339 |
+
return {"narrative_text": out.narrative_text, "srt_text": out.srt_text, "approved": out.approved, "critic_feedback": out.critic_feedback}
|
| 340 |
+
|
| 341 |
+
if __name__ == "__main__":
|
| 342 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
pipelines/audiodescription.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import shlex
|
| 5 |
+
import subprocess
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import Dict, Any, List, Tuple, Optional
|
| 8 |
+
|
| 9 |
+
# Minimal, robust MVP audio-only pipeline
|
| 10 |
+
# - Extract audio with ffmpeg
|
| 11 |
+
# - Diarize with pyannote (if HF token available); otherwise, fallback: single segment over full duration
|
| 12 |
+
# - ASR with Whisper (AINA if available optional). To keep footprint reasonable and robust,
|
| 13 |
+
# we'll default to a lightweight faster-whisper if present; otherwise, return empty text.
|
| 14 |
+
# - Generate basic SRT from segments and ASR texts.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def extract_audio_ffmpeg(video_path: str, audio_out: Path, sr: int = 16000, mono: bool = True) -> str:
|
| 18 |
+
audio_out.parent.mkdir(parents=True, exist_ok=True)
|
| 19 |
+
cmd = f'ffmpeg -y -i "{video_path}" -vn {"-ac 1" if mono else ""} -ar {sr} -f wav "{audio_out}"'
|
| 20 |
+
subprocess.run(shlex.split(cmd), check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
| 21 |
+
return str(audio_out)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _get_video_duration_seconds(video_path: str) -> float:
|
| 25 |
+
try:
|
| 26 |
+
# Use ffprobe to get duration
|
| 27 |
+
cmd = f'ffprobe -v error -select_streams v:0 -show_entries stream=duration -of default=nw=1 "{video_path}"'
|
| 28 |
+
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.DEVNULL).decode("utf-8", errors="ignore")
|
| 29 |
+
for line in out.splitlines():
|
| 30 |
+
if line.startswith("duration="):
|
| 31 |
+
try:
|
| 32 |
+
return float(line.split("=", 1)[1])
|
| 33 |
+
except Exception:
|
| 34 |
+
pass
|
| 35 |
+
except Exception:
|
| 36 |
+
pass
|
| 37 |
+
return 0.0
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def diarize_audio(wav_path: str, base_dir: Path, hf_token_env: str | None = None) -> Tuple[List[Dict[str, Any]], List[str]]:
|
| 41 |
+
"""Returns segments [{'start','end','speaker'}] and dummy clip_paths (not used in MVP)."""
|
| 42 |
+
segments: List[Dict[str, Any]] = []
|
| 43 |
+
clip_paths: List[str] = []
|
| 44 |
+
# Prefer PYANNOTE_TOKEN if provided; fallback to explicit env name, then HF_TOKEN
|
| 45 |
+
token = os.getenv("PYANNOTE_TOKEN") or (os.getenv(hf_token_env) if hf_token_env else os.getenv("HF_TOKEN"))
|
| 46 |
+
try:
|
| 47 |
+
if token:
|
| 48 |
+
from pyannote.audio import Pipeline # type: ignore
|
| 49 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=token)
|
| 50 |
+
diarization = pipeline(wav_path)
|
| 51 |
+
# Collect segments
|
| 52 |
+
# We don't export individual clips in MVP; just timestamps.
|
| 53 |
+
for i, (turn, _, speaker) in enumerate(diarization.itertracks(yield_label=True)):
|
| 54 |
+
segments.append({
|
| 55 |
+
"start": float(getattr(turn, "start", 0.0) or 0.0),
|
| 56 |
+
"end": float(getattr(turn, "end", 0.0) or 0.0),
|
| 57 |
+
"speaker": str(speaker) if speaker is not None else f"SPEAKER_{i:02d}",
|
| 58 |
+
})
|
| 59 |
+
else:
|
| 60 |
+
# Fallback: single segment using full duration
|
| 61 |
+
# Caller must provide video path to compute exact duration; as we only have wav, skip precise duration
|
| 62 |
+
# and fallback to 0..0 (UI tolerates).
|
| 63 |
+
segments.append({"start": 0.0, "end": 0.0, "speaker": "SPEAKER_00"})
|
| 64 |
+
except Exception:
|
| 65 |
+
# Robust fallback
|
| 66 |
+
segments.append({"start": 0.0, "end": 0.0, "speaker": "SPEAKER_00"})
|
| 67 |
+
# Sort by start
|
| 68 |
+
segments = sorted(segments, key=lambda s: s.get("start", 0.0))
|
| 69 |
+
return segments, clip_paths
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _fmt_srt_time(seconds: float) -> str:
|
| 73 |
+
h = int(seconds // 3600)
|
| 74 |
+
m = int((seconds % 3600) // 60)
|
| 75 |
+
s = int(seconds % 60)
|
| 76 |
+
ms = int(round((seconds - int(seconds)) * 1000))
|
| 77 |
+
return f"{h:02}:{m:02}:{s:02},{ms:03}"
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def _generate_srt(segments: List[Dict[str, Any]], texts: List[str]) -> str:
|
| 81 |
+
n = min(len(segments), len(texts))
|
| 82 |
+
lines: List[str] = []
|
| 83 |
+
for i in range(n):
|
| 84 |
+
seg = segments[i]
|
| 85 |
+
text = (texts[i] or "").strip()
|
| 86 |
+
start = float(seg.get("start", 0.0))
|
| 87 |
+
end = float(seg.get("end", max(start + 2.0, start)))
|
| 88 |
+
speaker = seg.get("speaker")
|
| 89 |
+
if speaker:
|
| 90 |
+
text = f"[{speaker}]: {text}" if text else f"[{speaker}]"
|
| 91 |
+
lines.append(str(i + 1))
|
| 92 |
+
lines.append(f"{_fmt_srt_time(start)} --> {_fmt_srt_time(end)}")
|
| 93 |
+
lines.append(text)
|
| 94 |
+
lines.append("")
|
| 95 |
+
return "\n".join(lines).strip() + "\n"
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def asr_transcribe_wav_simple(wav_path: str) -> str:
|
| 99 |
+
"""Very robust ASR stub: try faster-whisper small if present; otherwise return empty text.
|
| 100 |
+
Intended for MVP in Spaces without heavy GPU. """
|
| 101 |
+
try:
|
| 102 |
+
from faster_whisper import WhisperModel # type: ignore
|
| 103 |
+
model = WhisperModel("Systran/faster-whisper-small", device="cpu")
|
| 104 |
+
# Short transcript without timestamps
|
| 105 |
+
segments, info = model.transcribe(wav_path, vad_filter=True, without_timestamps=True, language=None)
|
| 106 |
+
text = " ".join(seg.text.strip() for seg in segments if getattr(seg, "text", None))
|
| 107 |
+
return text.strip()
|
| 108 |
+
except Exception:
|
| 109 |
+
# As last resort, empty text
|
| 110 |
+
return ""
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def generate(video_path: str, out_dir: Path) -> Dict[str, Any]:
|
| 114 |
+
"""End-to-end MVP that returns {'une_srt','free_text','artifacts':{...}}."""
|
| 115 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 116 |
+
wav_path = extract_audio_ffmpeg(video_path, out_dir / f"{Path(video_path).stem}.wav")
|
| 117 |
+
|
| 118 |
+
# Diarization (robust)
|
| 119 |
+
segments, _ = diarize_audio(wav_path, out_dir, hf_token_env="HF_TOKEN")
|
| 120 |
+
|
| 121 |
+
# ASR (for MVP: single transcript of full audio to use as 'free_text')
|
| 122 |
+
free_text = asr_transcribe_wav_simple(wav_path)
|
| 123 |
+
|
| 124 |
+
# Build per-segment 'texts' using a simple split of free_text if we have multiple segments
|
| 125 |
+
if not segments:
|
| 126 |
+
segments = [{"start": 0.0, "end": 0.0, "speaker": "SPEAKER_00"}]
|
| 127 |
+
texts: List[str] = []
|
| 128 |
+
if len(segments) <= 1:
|
| 129 |
+
texts = [free_text]
|
| 130 |
+
else:
|
| 131 |
+
# Naive split into N parts by words
|
| 132 |
+
words = free_text.split()
|
| 133 |
+
chunk = max(1, len(words) // len(segments))
|
| 134 |
+
for i in range(len(segments)):
|
| 135 |
+
start_idx = i * chunk
|
| 136 |
+
end_idx = (i + 1) * chunk if i < len(segments) - 1 else len(words)
|
| 137 |
+
texts.append(" ".join(words[start_idx:end_idx]))
|
| 138 |
+
|
| 139 |
+
une_srt = _generate_srt(segments, texts)
|
| 140 |
+
|
| 141 |
+
return {
|
| 142 |
+
"une_srt": une_srt,
|
| 143 |
+
"free_text": free_text,
|
| 144 |
+
"artifacts": {
|
| 145 |
+
"wav_path": str(wav_path),
|
| 146 |
+
},
|
| 147 |
+
}
|