Upload 15 files
Browse files- LICENSE +15 -0
- README.md +16 -4
- audio_tools.py +725 -0
- background_descriptor.py +43 -0
- casting_loader.py +340 -0
- config.yaml +171 -0
- identity_manager.py +125 -0
- llm_router.py +67 -0
- main_api.py +117 -0
- narration_system.py +185 -0
- remote_clients.py +96 -0
- requirements.txt +38 -4
- scripts/client_example.py +33 -0
- video_processing.py +141 -0
- vision_tools.py +573 -0
LICENSE
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2025 - Dive-tech
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
README.md
CHANGED
|
@@ -1,10 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: blue
|
| 6 |
sdk: docker
|
|
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============================
|
| 2 |
+
# README (para Hugging Face Space, FastAPI)
|
| 3 |
+
# ============================
|
| 4 |
+
"""
|
| 5 |
---
|
| 6 |
+
title: Veureu Engine (FastAPI)
|
| 7 |
+
emoji: 🎧
|
| 8 |
+
colorFrom: gray
|
| 9 |
colorTo: blue
|
| 10 |
sdk: docker
|
| 11 |
+
app_file: main_api.py
|
| 12 |
pinned: false
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Veureu Engine API
|
| 16 |
+
|
| 17 |
+
Endpoints:
|
| 18 |
+
- `POST /process_video` — orquesta `video_processing.py` (audio_tools + vision_tools + identity/background managers).
|
| 19 |
+
- `POST /load_casting` — construye índices de caras y voces en ChromaDB.
|
| 20 |
+
- `POST /refine_narration` — invoca `narration_system.py` para refinar narración y SRT según UNE-153010.
|
| 21 |
+
|
| 22 |
+
"""
|
audio_tools.py
ADDED
|
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# audio_tools.py
|
| 2 |
+
# -----------------------------------------------------------------------------
|
| 3 |
+
# Veureu — AUDIO utilities (self-contained)
|
| 4 |
+
# - FFmpeg extraction (WAV)
|
| 5 |
+
# - Diarization (pyannote)
|
| 6 |
+
# - ASR:
|
| 7 |
+
# * Catalan ("ca") -> AINA Whisper
|
| 8 |
+
# * Other languages -> Lightweight generic Whisper
|
| 9 |
+
# - Integrated Language ID (Whisper via faster-whisper)
|
| 10 |
+
# - Voice embeddings (SpeechBrain ECAPA)
|
| 11 |
+
# - Speaker identification (KMeans + optional ChromaDB collection)
|
| 12 |
+
# - SRT generation
|
| 13 |
+
# - Orchestrator: process_audio_for_video(...)
|
| 14 |
+
# - ADDED: ASR of full audio and LLM-based SRT correction
|
| 15 |
+
# -----------------------------------------------------------------------------
|
| 16 |
+
from __future__ import annotations
|
| 17 |
+
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 21 |
+
|
| 22 |
+
import json
|
| 23 |
+
import logging
|
| 24 |
+
import math
|
| 25 |
+
import os
|
| 26 |
+
import shlex
|
| 27 |
+
import subprocess
|
| 28 |
+
|
| 29 |
+
import numpy as np
|
| 30 |
+
import torch
|
| 31 |
+
import torchaudio
|
| 32 |
+
import torchaudio.transforms as T
|
| 33 |
+
from pydub import AudioSegment
|
| 34 |
+
from pyannote.audio import Pipeline
|
| 35 |
+
from speechbrain.pretrained import SpeakerRecognition
|
| 36 |
+
from sklearn.cluster import KMeans
|
| 37 |
+
from sklearn.metrics import silhouette_score
|
| 38 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
| 39 |
+
from openai import OpenAI as OpenAIClient
|
| 40 |
+
import noisereduce as nr
|
| 41 |
+
|
| 42 |
+
# -------------------------------- Logging ------------------------------------
|
| 43 |
+
log = logging.getLogger("audio_tools")
|
| 44 |
+
if not log.handlers:
|
| 45 |
+
_h = logging.StreamHandler()
|
| 46 |
+
_h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
|
| 47 |
+
log.addHandler(_h)
|
| 48 |
+
log.setLevel(logging.INFO)
|
| 49 |
+
|
| 50 |
+
# ------------------------------- Utilities -----------------------------------
|
| 51 |
+
|
| 52 |
+
def _pick_device_auto(dev_cfg: str) -> str:
|
| 53 |
+
"""Resolve 'auto' device to cuda/cpu."""
|
| 54 |
+
if dev_cfg == "auto":
|
| 55 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
+
return dev_cfg
|
| 57 |
+
|
| 58 |
+
def load_config(path: str = "configs/config_veureu.yaml") -> Dict[str, Any]:
|
| 59 |
+
p = Path(path)
|
| 60 |
+
if not p.exists():
|
| 61 |
+
log.warning("Config file not found: %s (using defaults)", path)
|
| 62 |
+
return {}
|
| 63 |
+
try:
|
| 64 |
+
import yaml
|
| 65 |
+
cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
|
| 66 |
+
cfg["__path__"] = str(p)
|
| 67 |
+
return cfg
|
| 68 |
+
except Exception as e:
|
| 69 |
+
log.error("Failed to read YAML config: %s", e)
|
| 70 |
+
return {}
|
| 71 |
+
|
| 72 |
+
# ------------------------------- Extraction ----------------------------------
|
| 73 |
+
|
| 74 |
+
def extract_audio_ffmpeg(
|
| 75 |
+
video_path: str,
|
| 76 |
+
audio_out: Path,
|
| 77 |
+
sr: int = 16000,
|
| 78 |
+
mono: bool = True,
|
| 79 |
+
) -> str:
|
| 80 |
+
"""Extract audio from video to WAV using ffmpeg."""
|
| 81 |
+
audio_out.parent.mkdir(parents=True, exist_ok=True)
|
| 82 |
+
cmd = f'ffmpeg -y -i "{video_path}" -vn {"-ac 1" if mono else ""} -ar {sr} -f wav "{audio_out}"'
|
| 83 |
+
subprocess.run(
|
| 84 |
+
shlex.split(cmd),
|
| 85 |
+
check=True,
|
| 86 |
+
stdout=subprocess.DEVNULL,
|
| 87 |
+
stderr=subprocess.DEVNULL,
|
| 88 |
+
)
|
| 89 |
+
return str(audio_out)
|
| 90 |
+
|
| 91 |
+
# ----------------------------------- ASR -------------------------------------
|
| 92 |
+
|
| 93 |
+
@dataclass
|
| 94 |
+
class AinaASR:
|
| 95 |
+
"""ASR for Catalan using the AINA Whisper model."""
|
| 96 |
+
model_name: str = "projecte-aina/whisper-large-v3-ca-3catparla"
|
| 97 |
+
device: str = "cuda"
|
| 98 |
+
|
| 99 |
+
def __post_init__(self):
|
| 100 |
+
dev = self.device
|
| 101 |
+
if dev == "cuda" and not torch.cuda.is_available():
|
| 102 |
+
dev = "cpu"
|
| 103 |
+
self.processor = WhisperProcessor.from_pretrained(self.model_name)
|
| 104 |
+
self.model = WhisperForConditionalGeneration.from_pretrained(self.model_name).to(dev)
|
| 105 |
+
self.device = dev
|
| 106 |
+
log.info(f"ASR AINA loaded on {self.device}: {self.model_name}")
|
| 107 |
+
|
| 108 |
+
def transcribe_wav(self, wav_path: str) -> str:
|
| 109 |
+
waveform, sr = torchaudio.load(wav_path)
|
| 110 |
+
inputs = self.processor(
|
| 111 |
+
waveform.numpy(), sampling_rate=sr, return_tensors="pt"
|
| 112 |
+
).input_features.to(self.model.device)
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
ids = self.model.generate(inputs, max_new_tokens=440)[0]
|
| 115 |
+
txt = self.processor.decode(ids)
|
| 116 |
+
norm = getattr(self.processor.tokenizer, "_normalize", None)
|
| 117 |
+
return norm(txt) if callable(norm) else txt
|
| 118 |
+
|
| 119 |
+
def transcribe_long_audio(
|
| 120 |
+
self,
|
| 121 |
+
wav_path: str,
|
| 122 |
+
chunk_length_s: int = 20,
|
| 123 |
+
overlap_s: int = 2,
|
| 124 |
+
) -> str:
|
| 125 |
+
waveform, sr = torchaudio.load(wav_path)
|
| 126 |
+
total_samples = waveform.shape[1]
|
| 127 |
+
chunk_size = chunk_length_s * sr
|
| 128 |
+
overlap_size = overlap_s * sr
|
| 129 |
+
|
| 130 |
+
transcriptions = []
|
| 131 |
+
start = 0
|
| 132 |
+
|
| 133 |
+
while start < total_samples:
|
| 134 |
+
end = min(start + chunk_size, total_samples)
|
| 135 |
+
chunk = waveform[:, start:end]
|
| 136 |
+
|
| 137 |
+
input_features = self.processor(
|
| 138 |
+
chunk.numpy(),
|
| 139 |
+
sampling_rate=sr,
|
| 140 |
+
return_tensors="pt"
|
| 141 |
+
).input_features.to(self.model.device)
|
| 142 |
+
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
predicted_ids = self.model.generate(
|
| 145 |
+
input_features,
|
| 146 |
+
max_new_tokens=440,
|
| 147 |
+
num_beams=1, # puedes probar beam search
|
| 148 |
+
)[0]
|
| 149 |
+
|
| 150 |
+
text = self.processor.decode(predicted_ids, skip_special_tokens=True)
|
| 151 |
+
transcriptions.append(text.strip())
|
| 152 |
+
|
| 153 |
+
# avanzar con solapamiento
|
| 154 |
+
start += chunk_size - overlap_size
|
| 155 |
+
|
| 156 |
+
return " ".join(transcriptions).strip()
|
| 157 |
+
|
| 158 |
+
@dataclass
|
| 159 |
+
class WhisperASR:
|
| 160 |
+
"""Lightweight generic ASR based on Whisper for non-Catalan languages."""
|
| 161 |
+
model_name: str = "openai/whisper-small" # change to 'base' for an even lighter model
|
| 162 |
+
device: str = "cuda"
|
| 163 |
+
language: Optional[str] = None # force language, e.g. "es", "en", etc.
|
| 164 |
+
|
| 165 |
+
def __post_init__(self):
|
| 166 |
+
dev = self.device
|
| 167 |
+
if dev == "cuda" and not torch.cuda.is_available():
|
| 168 |
+
dev = "cpu"
|
| 169 |
+
self.processor = WhisperProcessor.from_pretrained(self.model_name)
|
| 170 |
+
self.model = WhisperForConditionalGeneration.from_pretrained(self.model_name).to(dev)
|
| 171 |
+
self.device = dev
|
| 172 |
+
log.info(f"ASR Whisper loaded on {self.device}: {self.model_name} (lang hint: {self.language})")
|
| 173 |
+
|
| 174 |
+
def transcribe_wav(self, wav_path: str) -> str:
|
| 175 |
+
waveform, sr = torchaudio.load(wav_path)
|
| 176 |
+
inputs = self.processor(
|
| 177 |
+
waveform.numpy(), sampling_rate=sr, return_tensors="pt"
|
| 178 |
+
).input_features.to(self.model.device)
|
| 179 |
+
|
| 180 |
+
gen_kwargs: Dict[str, Any] = dict(max_new_tokens=444)
|
| 181 |
+
if self.language and self.language != "auto":
|
| 182 |
+
try:
|
| 183 |
+
forced_ids = self.processor.get_decoder_prompt_ids(
|
| 184 |
+
language=self.language, task="transcribe"
|
| 185 |
+
)
|
| 186 |
+
gen_kwargs["forced_decoder_ids"] = forced_ids
|
| 187 |
+
except Exception:
|
| 188 |
+
# If the model/processor does not support forced ids, continue without forcing
|
| 189 |
+
pass
|
| 190 |
+
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
ids = self.model.generate(inputs, **gen_kwargs)[0]
|
| 193 |
+
txt = self.processor.decode(ids)
|
| 194 |
+
norm = getattr(self.processor.tokenizer, "_normalize", None)
|
| 195 |
+
return norm(txt) if callable(norm) else txt
|
| 196 |
+
|
| 197 |
+
# ------------------------------ Language ID ----------------------------------
|
| 198 |
+
|
| 199 |
+
@dataclass
|
| 200 |
+
class WhisperLIDConfig:
|
| 201 |
+
"""Configuration for language detection with faster-whisper."""
|
| 202 |
+
model_name: str = "Systran/faster-whisper-small"
|
| 203 |
+
device: str = "auto"
|
| 204 |
+
compute_type: str = "float32" # "int8" | "float16" | "float32"
|
| 205 |
+
beam_size: int = 1
|
| 206 |
+
chunk_seconds: float = 30.0
|
| 207 |
+
prob_threshold: float = 0.5
|
| 208 |
+
fallback_lang: str = "auto"
|
| 209 |
+
|
| 210 |
+
def detect_language_with_whisper(
|
| 211 |
+
wav_path: str,
|
| 212 |
+
cfg: Dict[str, Any],
|
| 213 |
+
) -> Tuple[str, float]:
|
| 214 |
+
"""
|
| 215 |
+
Detects language using faster-whisper (WhisperModel). Returns (lang_iso, prob).
|
| 216 |
+
In case of failure, returns (fallback_lang, 0.0).
|
| 217 |
+
"""
|
| 218 |
+
lid_cfg_d = (cfg.get("asr", {})
|
| 219 |
+
.get("language_detection", {})
|
| 220 |
+
.get("whisper_lid", {}))
|
| 221 |
+
lid_cfg = WhisperLIDConfig(
|
| 222 |
+
model_name=lid_cfg_d.get("model_name", "Systran/faster-whisper-small",),
|
| 223 |
+
device=_pick_device_auto(lid_cfg_d.get("device", "auto")),
|
| 224 |
+
compute_type=lid_cfg_d.get("compute_type", "float32"),
|
| 225 |
+
beam_size=int(lid_cfg_d.get("beam_size", 1)),
|
| 226 |
+
chunk_seconds=float(lid_cfg_d.get("chunk_seconds", 30.0)),
|
| 227 |
+
prob_threshold=float(lid_cfg_d.get("prob_threshold", 0.5)),
|
| 228 |
+
fallback_lang=lid_cfg_d.get("fallback_lang", "auto"),
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
from faster_whisper import WhisperModel # type: ignore
|
| 233 |
+
except Exception as e:
|
| 234 |
+
log.warning(f"LID: faster-whisper not available ({e}). Fallback='{lid_cfg.fallback_lang}'")
|
| 235 |
+
return lid_cfg.fallback_lang, 0.0
|
| 236 |
+
|
| 237 |
+
try:
|
| 238 |
+
model = WhisperModel(lid_cfg.model_name, device=lid_cfg.device, compute_type=lid_cfg.compute_type)
|
| 239 |
+
except Exception as e:
|
| 240 |
+
log.warning(f"LID: failed to load '{lid_cfg.model_name}': {e}. Fallback='{lid_cfg.fallback_lang}'")
|
| 241 |
+
return lid_cfg.fallback_lang, 0.0
|
| 242 |
+
|
| 243 |
+
try:
|
| 244 |
+
segments, info = model.transcribe(
|
| 245 |
+
wav_path,
|
| 246 |
+
beam_size=lid_cfg.beam_size,
|
| 247 |
+
vad_filter=True,
|
| 248 |
+
without_timestamps=True,
|
| 249 |
+
language=None
|
| 250 |
+
)
|
| 251 |
+
lang = info.language or lid_cfg.fallback_lang
|
| 252 |
+
prob = float(info.language_probability or 0.0)
|
| 253 |
+
if prob < lid_cfg.prob_threshold:
|
| 254 |
+
return lid_cfg.fallback_lang, prob
|
| 255 |
+
return lang, prob
|
| 256 |
+
except Exception as e:
|
| 257 |
+
log.warning(f"LID: error in transcription/detection: {e}. Fallback='{lid_cfg.fallback_lang}'")
|
| 258 |
+
return lid_cfg.fallback_lang, 0.0
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def _build_asr_backend_for_language(lang_iso: str, cfg: Dict[str, Any]):
|
| 262 |
+
"""
|
| 263 |
+
Selects ASR backend based on language:
|
| 264 |
+
- 'ca' -> AINA
|
| 265 |
+
- other -> Generic Whisper
|
| 266 |
+
"""
|
| 267 |
+
asr_cfg = cfg.get("asr", {})
|
| 268 |
+
device_pref = _pick_device_auto(asr_cfg.get("device", "auto"))
|
| 269 |
+
if lang_iso and lang_iso.lower() == "ca":
|
| 270 |
+
return AinaASR(
|
| 271 |
+
model_name=asr_cfg.get("model_name", "projecte-aina/whisper-large-v3-ca-3catparla"),
|
| 272 |
+
device=device_pref,
|
| 273 |
+
)
|
| 274 |
+
else:
|
| 275 |
+
return WhisperASR(
|
| 276 |
+
model_name=asr_cfg.get("whisper_model_name", "openai/whisper-small"),
|
| 277 |
+
device=device_pref,
|
| 278 |
+
language=None,
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# -------------------------------- Diarization --------------------------------
|
| 282 |
+
from pathlib import Path
|
| 283 |
+
from typing import List, Dict, Any, Tuple
|
| 284 |
+
from pydub import AudioSegment
|
| 285 |
+
from pyannote.audio import Pipeline
|
| 286 |
+
import math
|
| 287 |
+
|
| 288 |
+
def diarize_audio(
|
| 289 |
+
wav_path: str,
|
| 290 |
+
base_dir: Path,
|
| 291 |
+
clips_folder: str = "clips",
|
| 292 |
+
min_segment_duration: float = 20,
|
| 293 |
+
max_segment_duration: float = 50.0,
|
| 294 |
+
hf_token_env: str | None = None,
|
| 295 |
+
) -> Tuple[List[str], List[Dict[str, Any]]]:
|
| 296 |
+
"""Diarization with pyannote and clip export with pydub.
|
| 297 |
+
Returns clip paths and segments [{'start','end','speaker'}].
|
| 298 |
+
"""
|
| 299 |
+
audio = AudioSegment.from_wav(wav_path)
|
| 300 |
+
duration = len(audio) / 1000.0
|
| 301 |
+
|
| 302 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=(hf_token_env
|
| 303 |
+
or os.getenv("HF_TOKEN")))
|
| 304 |
+
diarization = pipeline(wav_path)
|
| 305 |
+
|
| 306 |
+
clips_dir = (base_dir / clips_folder)
|
| 307 |
+
clips_dir.mkdir(parents=True, exist_ok=True)
|
| 308 |
+
clip_paths: List[str] = []
|
| 309 |
+
segments: List[Dict[str, Any]] = []
|
| 310 |
+
spk_map: Dict[str, int] = {}
|
| 311 |
+
|
| 312 |
+
prev_end = 0.0 # referencia al final del último segmento exportado
|
| 313 |
+
|
| 314 |
+
for i, (turn, _, speaker) in enumerate(diarization.itertracks(yield_label=True)):
|
| 315 |
+
start, end = max(0.0, float(turn.start)), min(duration, float(turn.end))
|
| 316 |
+
|
| 317 |
+
if start < prev_end:
|
| 318 |
+
start = prev_end
|
| 319 |
+
if end <= start:
|
| 320 |
+
continue
|
| 321 |
+
|
| 322 |
+
seg_dur = end - start
|
| 323 |
+
if seg_dur < min_segment_duration:
|
| 324 |
+
continue
|
| 325 |
+
|
| 326 |
+
if seg_dur > max_segment_duration:
|
| 327 |
+
# split long segments
|
| 328 |
+
n = int(math.ceil(seg_dur / max_segment_duration))
|
| 329 |
+
sub_d = seg_dur / n
|
| 330 |
+
for j in range(n):
|
| 331 |
+
s = start + j * sub_d
|
| 332 |
+
e = min(end, start + (j + 1) * sub_d)
|
| 333 |
+
if e <= s:
|
| 334 |
+
continue
|
| 335 |
+
clip = audio[int(s * 1000):int(e * 1000)]
|
| 336 |
+
cp = clips_dir / f"segment_{i:03d}_{j:02d}.wav"
|
| 337 |
+
clip.export(cp, format="wav")
|
| 338 |
+
if speaker not in spk_map:
|
| 339 |
+
spk_map[speaker] = len(spk_map)
|
| 340 |
+
segments.append({
|
| 341 |
+
"start": s,
|
| 342 |
+
"end": e,
|
| 343 |
+
"speaker": f"SPEAKER_{spk_map[speaker]:02d}"
|
| 344 |
+
})
|
| 345 |
+
clip_paths.append(str(cp))
|
| 346 |
+
prev_end = e
|
| 347 |
+
else:
|
| 348 |
+
clip = audio[int(start * 1000):int(end * 1000)]
|
| 349 |
+
cp = clips_dir / f"segment_{i:03d}.wav"
|
| 350 |
+
clip.export(cp, format="wav")
|
| 351 |
+
if speaker not in spk_map:
|
| 352 |
+
spk_map[speaker] = len(spk_map)
|
| 353 |
+
segments.append({
|
| 354 |
+
"start": start,
|
| 355 |
+
"end": end,
|
| 356 |
+
"speaker": f"SPEAKER_{spk_map[speaker]:02d}"
|
| 357 |
+
})
|
| 358 |
+
clip_paths.append(str(cp))
|
| 359 |
+
prev_end = end # actualizar referencia
|
| 360 |
+
|
| 361 |
+
if not segments:
|
| 362 |
+
# fallback single clip
|
| 363 |
+
cp = clips_dir / "segment_000.wav"
|
| 364 |
+
audio.export(cp, format="wav")
|
| 365 |
+
return [str(cp)], [{"start": 0.0, "end": duration, "speaker": "SPEAKER_00"}]
|
| 366 |
+
|
| 367 |
+
# sort by start time
|
| 368 |
+
pairs = sorted(zip(clip_paths, segments), key=lambda x: x[1]["start"])
|
| 369 |
+
clip_paths, segments = [p[0] for p in pairs], [p[1] for p in pairs]
|
| 370 |
+
return clip_paths, segments
|
| 371 |
+
|
| 372 |
+
# ------------------------------ Voice embeddings -----------------------------
|
| 373 |
+
|
| 374 |
+
class VoiceEmbedder:
|
| 375 |
+
def __init__(self):
|
| 376 |
+
self.model = SpeakerRecognition.from_hparams(
|
| 377 |
+
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 378 |
+
savedir="pretrained_models/spkrec-ecapa-voxceleb",
|
| 379 |
+
)
|
| 380 |
+
self.model.eval()
|
| 381 |
+
|
| 382 |
+
def embed(self, wav_path: str) -> List[float]:
|
| 383 |
+
waveform, sr = torchaudio.load(wav_path)
|
| 384 |
+
target_sr = 16000
|
| 385 |
+
if sr != target_sr:
|
| 386 |
+
waveform = T.Resample(orig_freq=sr, new_freq=target_sr)(waveform)
|
| 387 |
+
if waveform.shape[0] > 1:
|
| 388 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 389 |
+
# ensure minimum length (~0.2s) for stability
|
| 390 |
+
min_samples = int(0.2 * target_sr)
|
| 391 |
+
if waveform.shape[1] < min_samples:
|
| 392 |
+
pad = min_samples - waveform.shape[1]
|
| 393 |
+
waveform = torch.cat([waveform, torch.zeros((1, pad))], dim=1)
|
| 394 |
+
with torch.no_grad():
|
| 395 |
+
emb = (
|
| 396 |
+
self.model.encode_batch(waveform)
|
| 397 |
+
.squeeze()
|
| 398 |
+
.cpu()
|
| 399 |
+
.numpy()
|
| 400 |
+
.astype(float)
|
| 401 |
+
)
|
| 402 |
+
return emb.tolist()
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def embed_voice_segments(clip_paths: List[str]) -> List[List[float]]:
|
| 406 |
+
ve = VoiceEmbedder()
|
| 407 |
+
out: List[List[float]] = []
|
| 408 |
+
for cp in clip_paths:
|
| 409 |
+
try:
|
| 410 |
+
out.append(ve.embed(cp))
|
| 411 |
+
except Exception as e:
|
| 412 |
+
log.warning(f"Embedding error in {cp}: {e}")
|
| 413 |
+
out.append([])
|
| 414 |
+
return out
|
| 415 |
+
|
| 416 |
+
# --------------------------- Speaker identification --------------------------
|
| 417 |
+
|
| 418 |
+
def identify_speakers(
|
| 419 |
+
embeddings: List[List[float]],
|
| 420 |
+
voice_collection, # ChromaDB collection with .query or None
|
| 421 |
+
cfg: Dict[str, Any],
|
| 422 |
+
) -> List[str]:
|
| 423 |
+
voice_cfg = cfg.get("voice_processing", {}).get("speaker_identification", {})
|
| 424 |
+
if not embeddings or sum(1 for e in embeddings if e) < 2:
|
| 425 |
+
return ["SPEAKER_00" for _ in embeddings]
|
| 426 |
+
|
| 427 |
+
valid = [e for e in embeddings if e and len(e) > 0]
|
| 428 |
+
if len(valid) < 2:
|
| 429 |
+
return ["SPEAKER_00" for _ in embeddings]
|
| 430 |
+
|
| 431 |
+
min_clusters = max(1, voice_cfg.get("min_speakers", 1))
|
| 432 |
+
max_clusters = min(voice_cfg.get("max_speakers", 5), len(valid) - 1)
|
| 433 |
+
|
| 434 |
+
# buscar k óptimo usando silhouette_score
|
| 435 |
+
if voice_cfg.get("find_optimal_clusters", True) and len(valid) > 2:
|
| 436 |
+
best_score = -1.0
|
| 437 |
+
best_k = min_clusters
|
| 438 |
+
for k in range(min_clusters, max_clusters + 1):
|
| 439 |
+
if k >= len(valid):
|
| 440 |
+
break
|
| 441 |
+
km = KMeans(n_clusters=k, random_state=42, n_init="auto")
|
| 442 |
+
labels = km.fit_predict(valid)
|
| 443 |
+
if len(set(labels)) > 1:
|
| 444 |
+
score = silhouette_score(valid, labels)
|
| 445 |
+
if score > best_score:
|
| 446 |
+
best_score, best_k = score, k
|
| 447 |
+
else:
|
| 448 |
+
best_k = min(max_clusters, max(min_clusters, voice_cfg.get("num_speakers", 2)))
|
| 449 |
+
best_k = max(1, min(best_k, len(valid) - 1))
|
| 450 |
+
|
| 451 |
+
# clustering final
|
| 452 |
+
km = KMeans(n_clusters=best_k, random_state=42, n_init="auto", init="k-means++")
|
| 453 |
+
labels = km.fit_predict(np.array(valid))
|
| 454 |
+
centers = km.cluster_centers_
|
| 455 |
+
|
| 456 |
+
cluster_to_name: Dict[int, str] = {}
|
| 457 |
+
unknown_counter = 0
|
| 458 |
+
for cid in range(best_k):
|
| 459 |
+
center = centers[cid].tolist()
|
| 460 |
+
name = f"SPEAKER_{cid:02d}"
|
| 461 |
+
|
| 462 |
+
if voice_collection is not None:
|
| 463 |
+
try:
|
| 464 |
+
q = voice_collection.query(query_embeddings=[center], n_results=1)
|
| 465 |
+
metas = q.get("metadatas", [[]])[0]
|
| 466 |
+
dists = q.get("distances", [[]])[0]
|
| 467 |
+
thr = voice_cfg.get("distance_threshold")
|
| 468 |
+
|
| 469 |
+
if dists and thr is not None and dists[0] > thr:
|
| 470 |
+
# nuevo hablante → marcar como UNKNOWN y guardar en la colección
|
| 471 |
+
name = f"UNKNOWN_{unknown_counter}"
|
| 472 |
+
unknown_counter += 1
|
| 473 |
+
voice_collection.add(
|
| 474 |
+
embeddings=[center],
|
| 475 |
+
metadatas=[{"name": name}],
|
| 476 |
+
ids=[f"unk_{cid}_{unknown_counter}"]
|
| 477 |
+
)
|
| 478 |
+
else:
|
| 479 |
+
# coincidencia aceptable → usar nombre existente
|
| 480 |
+
if metas and isinstance(metas[0], dict):
|
| 481 |
+
name = metas[0].get("nombre") or metas[0].get("name") \
|
| 482 |
+
or metas[0].get("speaker") or metas[0].get("identity") \
|
| 483 |
+
or name
|
| 484 |
+
except Exception as e:
|
| 485 |
+
log.warning(f"Voice KNN query failed: {e}")
|
| 486 |
+
|
| 487 |
+
cluster_to_name[cid] = name
|
| 488 |
+
|
| 489 |
+
# mapear cada embedding a su hablante
|
| 490 |
+
personas: List[str] = []
|
| 491 |
+
vi = 0
|
| 492 |
+
for emb in embeddings:
|
| 493 |
+
if not emb:
|
| 494 |
+
personas.append("UNKNOWN")
|
| 495 |
+
else:
|
| 496 |
+
label = int(labels[vi])
|
| 497 |
+
personas.append(cluster_to_name.get(label, f"SPEAKER_{label:02d}"))
|
| 498 |
+
vi += 1
|
| 499 |
+
|
| 500 |
+
return personas
|
| 501 |
+
|
| 502 |
+
# ----------------------------------- SRT -------------------------------------
|
| 503 |
+
|
| 504 |
+
def _fmt_srt_time(seconds: float) -> str:
|
| 505 |
+
h = int(seconds // 3600)
|
| 506 |
+
m = int((seconds % 3600) // 60)
|
| 507 |
+
s = int(seconds % 60)
|
| 508 |
+
ms = int(round((seconds - int(seconds)) * 1000))
|
| 509 |
+
return f"{h:02}:{m:02}:{s:02},{ms:03}"
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def generate_srt_from_diarization(
|
| 513 |
+
diarization_segments: List[Dict[str, Any]],
|
| 514 |
+
transcriptions: List[str],
|
| 515 |
+
speakers_per_segment: List[str],
|
| 516 |
+
output_srt_path: str,
|
| 517 |
+
cfg: Dict[str, Any],
|
| 518 |
+
) -> None:
|
| 519 |
+
subs = cfg.get("subtitles", {})
|
| 520 |
+
max_cpl = int(subs.get("max_chars_per_line", 42))
|
| 521 |
+
max_lines = int(subs.get("max_lines_per_cue", 10))
|
| 522 |
+
speaker_display = subs.get("speaker_display", "brackets")
|
| 523 |
+
|
| 524 |
+
items: List[Dict[str, Any]] = []
|
| 525 |
+
n = min(len(diarization_segments), len(transcriptions), len(speakers_per_segment))
|
| 526 |
+
for i in range(n):
|
| 527 |
+
seg = diarization_segments[i]
|
| 528 |
+
text = (transcriptions[i] or "").strip()
|
| 529 |
+
spk = speakers_per_segment[i]
|
| 530 |
+
items.append(
|
| 531 |
+
{
|
| 532 |
+
"start": float(seg.get("start", 0.0)),
|
| 533 |
+
"end": float(seg.get("end", 0.0)),
|
| 534 |
+
"text": text,
|
| 535 |
+
"speaker": spk,
|
| 536 |
+
}
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
out = Path(output_srt_path)
|
| 540 |
+
out.parent.mkdir(parents=True, exist_ok=True)
|
| 541 |
+
with out.open("w", encoding="utf-8-sig") as f:
|
| 542 |
+
for i, it in enumerate(items, 1):
|
| 543 |
+
text = it["text"]
|
| 544 |
+
spk = it["speaker"]
|
| 545 |
+
if speaker_display == "brackets" and spk:
|
| 546 |
+
text = f"[{spk}]: {text}" # Adjusted format to match new script's style
|
| 547 |
+
elif speaker_display == "prefix" and spk:
|
| 548 |
+
text = f"{spk}: {text}"
|
| 549 |
+
|
| 550 |
+
# wrap simple
|
| 551 |
+
words = text.split()
|
| 552 |
+
lines: List[str] = []
|
| 553 |
+
cur = ""
|
| 554 |
+
for w in words:
|
| 555 |
+
if len(cur) + len(w) + (1 if cur else 0) <= max_cpl:
|
| 556 |
+
cur = (cur + " " + w) if cur else w
|
| 557 |
+
else:
|
| 558 |
+
lines.append(cur)
|
| 559 |
+
cur = w
|
| 560 |
+
if len(lines) >= max_lines - 1:
|
| 561 |
+
break
|
| 562 |
+
if cur and len(lines) < max_lines:
|
| 563 |
+
lines.append(cur)
|
| 564 |
+
f.write(f"{i}\n{_fmt_srt_time(it['start'])} --> {_fmt_srt_time(it['end'])}\n")
|
| 565 |
+
f.write("\n".join(lines) + "\n\n")
|
| 566 |
+
|
| 567 |
+
# ------------------------------ Orchestrator ---------------------------------
|
| 568 |
+
|
| 569 |
+
def process_audio_for_video(
|
| 570 |
+
video_path: str,
|
| 571 |
+
out_dir: Path,
|
| 572 |
+
cfg: Dict[str, Any],
|
| 573 |
+
voice_collection=None,
|
| 574 |
+
) -> Tuple[List[Dict[str, Any]], Optional[str]]:
|
| 575 |
+
"""
|
| 576 |
+
Audio pipeline: FFmpeg -> diarization -> LID -> ASR -> embeddings -> speaker-ID -> SRT.
|
| 577 |
+
Returns (audio_segments, srt_path or None).
|
| 578 |
+
"""
|
| 579 |
+
# 1) Audio extraction
|
| 580 |
+
audio_cfg = cfg.get("audio_processing", {})
|
| 581 |
+
sr = int(audio_cfg.get("sample_rate", 16000))
|
| 582 |
+
fmt = audio_cfg.get("format", "wav")
|
| 583 |
+
wav_path = extract_audio_ffmpeg(
|
| 584 |
+
video_path, out_dir / f"{Path(video_path).stem}.{fmt}", sr=sr
|
| 585 |
+
)
|
| 586 |
+
log.info("Audio extraído")
|
| 587 |
+
|
| 588 |
+
# 2) Diarización
|
| 589 |
+
diar_cfg = audio_cfg.get("diarization", {})
|
| 590 |
+
min_dur = float(diar_cfg.get("min_segment_duration", 0.5))
|
| 591 |
+
max_dur = float(diar_cfg.get("max_segment_duration", 10.0))
|
| 592 |
+
clip_paths, diar_segs = diarize_audio(
|
| 593 |
+
wav_path, out_dir, "clips", min_dur, max_dur
|
| 594 |
+
)
|
| 595 |
+
log.info("Clips de audio generados.")
|
| 596 |
+
|
| 597 |
+
# 3) Detección de idioma (opcional) + Selección de backend ASR
|
| 598 |
+
asr_cfg = cfg.get("asr", {})
|
| 599 |
+
lid_enabled = bool(asr_cfg.get("language_detection", {}).get("enabled", True))
|
| 600 |
+
|
| 601 |
+
device_pref = _pick_device_auto(asr_cfg.get("device", "auto"))
|
| 602 |
+
|
| 603 |
+
aina_asr = AinaASR(model_name=asr_cfg.get("model_name", "projecte-aina/whisper-large-v3-ca-3catparla"),
|
| 604 |
+
device=device_pref)
|
| 605 |
+
|
| 606 |
+
whisper_asr = WhisperASR(model_name=asr_cfg.get("whisper_model_name", "openai/whisper-small"),
|
| 607 |
+
device=device_pref,
|
| 608 |
+
language=None)
|
| 609 |
+
|
| 610 |
+
full_transcription = ""
|
| 611 |
+
if asr_cfg.get("enable_full_transcription", True):
|
| 612 |
+
log.info("Iniciando transcripción del audio completo")
|
| 613 |
+
# Assume Catalan model for full transcription, or add logic to check language
|
| 614 |
+
full_transcription = aina_asr.transcribe_long_audio(wav_path, chunk_length_s=30)
|
| 615 |
+
log.info("Transcripción completa del audio finalizada.")
|
| 616 |
+
print(full_transcription)
|
| 617 |
+
|
| 618 |
+
# Transcribe each segment
|
| 619 |
+
log.info("Comenzamos con la transcripción de cada clip.")
|
| 620 |
+
trans: List[str] = []
|
| 621 |
+
detected_langs: List[str] = []
|
| 622 |
+
detected_probs: List[float] = []
|
| 623 |
+
for path in clip_paths:
|
| 624 |
+
if not lid_enabled:
|
| 625 |
+
txt = aina_asr.transcribe_wav(path)
|
| 626 |
+
else:
|
| 627 |
+
detected_lang, detected_prob = detect_language_with_whisper(path, cfg)
|
| 628 |
+
log.info(f"LID: detected={detected_lang} (p={detected_prob:.2f})")
|
| 629 |
+
|
| 630 |
+
if detected_lang.lower() in ["ca", "catalan"]:
|
| 631 |
+
txt = aina_asr.transcribe_wav(path)
|
| 632 |
+
else:
|
| 633 |
+
txt = whisper_asr.transcribe_wav(path)
|
| 634 |
+
trans.append(txt)
|
| 635 |
+
|
| 636 |
+
log.info("Se han transcrito todos los clips.")
|
| 637 |
+
|
| 638 |
+
# 5) Embeddings + Identificación de hablantes
|
| 639 |
+
if audio_cfg.get("enable_voice_embeddings", True):
|
| 640 |
+
embeddings = embed_voice_segments(clip_paths)
|
| 641 |
+
log.info("Embeddings creados de manera correcta para cada clip.")
|
| 642 |
+
else:
|
| 643 |
+
embeddings = [[] for _ in clip_paths]
|
| 644 |
+
|
| 645 |
+
if cfg.get("voice_processing", {}).get("speaker_identification", {}).get("enabled", True):
|
| 646 |
+
speakers = identify_speakers(embeddings, voice_collection, cfg)
|
| 647 |
+
log.info("Speakers identificados de manera correcta.")
|
| 648 |
+
else:
|
| 649 |
+
speakers = [seg.get("speaker", f"SPEAKER_{i:02d}") for i, seg in enumerate(diar_segs)]
|
| 650 |
+
|
| 651 |
+
# 6) Construir tabla de segmentos
|
| 652 |
+
audio_segments: List[Dict[str, Any]] = []
|
| 653 |
+
for i, seg in enumerate(diar_segs):
|
| 654 |
+
audio_segments.append(
|
| 655 |
+
{
|
| 656 |
+
"segment": i,
|
| 657 |
+
"start": float(seg.get("start", 0.0)),
|
| 658 |
+
"end": float(seg.get("end", 0.0)),
|
| 659 |
+
"speaker": speakers[i] if i < len(speakers) else seg.get("speaker", f"SPEAKER_{i:02d}"),
|
| 660 |
+
"text": trans[i] if i < len(trans) else "",
|
| 661 |
+
"voice_embedding": embeddings[i],
|
| 662 |
+
"clip_path": str(out_dir / "clips" / f"segment_{i:03d}.wav"),
|
| 663 |
+
"lang": detected_langs[i] if i < len(detected_langs) else "auto",
|
| 664 |
+
"lang_prob": detected_probs[i] if i < len(detected_probs) else 0.0,
|
| 665 |
+
}
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
# 7) SRT
|
| 669 |
+
srt_base_path = out_dir / f"transcripcion_diarizada_{Path(video_path).stem}"
|
| 670 |
+
srt_unmodified_path = str(srt_base_path) + "_unmodified.srt"
|
| 671 |
+
|
| 672 |
+
# Generate initial SRT
|
| 673 |
+
try:
|
| 674 |
+
generate_srt_from_diarization(
|
| 675 |
+
diar_segs,
|
| 676 |
+
[a["text"] for a in audio_segments],
|
| 677 |
+
[a["speaker"] for a in audio_segments],
|
| 678 |
+
srt_unmodified_path,
|
| 679 |
+
cfg,
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
except Exception as e:
|
| 683 |
+
log.warning(f"SRT generation failed: {e}")
|
| 684 |
+
srt_unmodified_path = None
|
| 685 |
+
|
| 686 |
+
return audio_segments, srt_unmodified_path, full_transcription
|
| 687 |
+
|
| 688 |
+
# ----------------------------------- CLI -------------------------------------
|
| 689 |
+
if __name__ == "__main__":
|
| 690 |
+
import argparse
|
| 691 |
+
import yaml
|
| 692 |
+
|
| 693 |
+
ap = argparse.ArgumentParser(description="Veureu — Audio tools (self-contained)")
|
| 694 |
+
ap.add_argument("--video", required=True)
|
| 695 |
+
ap.add_argument("--out", default="results")
|
| 696 |
+
ap.add_argument("--config", default="configs/config_veureu.yaml")
|
| 697 |
+
args = ap.parse_args()
|
| 698 |
+
|
| 699 |
+
cfg: Dict[str, Any] = {}
|
| 700 |
+
p = Path(args.config)
|
| 701 |
+
if p.exists():
|
| 702 |
+
try:
|
| 703 |
+
cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
|
| 704 |
+
except Exception as e:
|
| 705 |
+
log.warning(f"No se pudo leer el YAML de config: {e}")
|
| 706 |
+
|
| 707 |
+
out_dir = Path(args.out) / Path(args.video).stem
|
| 708 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 709 |
+
|
| 710 |
+
# Aggiungi una chiave API di OpenAI al tuo file di configurazione o qui
|
| 711 |
+
# Esempio: cfg["api_keys"] = {"openai": "sk-your-openai-api-key"}
|
| 712 |
+
# Assicurati di non commettere la chiave in git!
|
| 713 |
+
|
| 714 |
+
segs, srt = process_audio_for_video(args.video, out_dir, cfg, voice_collection=None)
|
| 715 |
+
|
| 716 |
+
print(json.dumps(
|
| 717 |
+
{
|
| 718 |
+
"segments": len(segs),
|
| 719 |
+
"srt": srt,
|
| 720 |
+
"detected_lang": (segs[0].get("lang") if segs else "auto"),
|
| 721 |
+
"detected_prob": (segs[0].get("lang_prob") if segs else 0.0),
|
| 722 |
+
},
|
| 723 |
+
indent=2,
|
| 724 |
+
ensure_ascii=False,
|
| 725 |
+
))
|
background_descriptor.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ================================
|
| 2 |
+
# PATCH: background_descriptor.py (describe_keyframes_with_llm)
|
| 3 |
+
# ================================
|
| 4 |
+
# Sustituimos la llamada directa a describe_montage_sequence por router.vision_describe
|
| 5 |
+
# y mantenemos como fallback la función existente.
|
| 6 |
+
|
| 7 |
+
# (reemplaza la función en este archivo por esta versión)
|
| 8 |
+
|
| 9 |
+
def describe_keyframes_with_llm(
|
| 10 |
+
keyframes: List[Dict[str, Any]],
|
| 11 |
+
out_dir: Path,
|
| 12 |
+
face_identities: Optional[set] = None,
|
| 13 |
+
config_path: str | None = None,
|
| 14 |
+
) -> Tuple[List[Dict[str, Any]], Optional[str]]:
|
| 15 |
+
from llm_router import load_yaml, LLMRouter
|
| 16 |
+
cfg = load_yaml(config_path or "config.yaml")
|
| 17 |
+
model_name = (cfg.get("background_descriptor", {}).get("description", {}) or {}).get("model", "salamandra-vision")
|
| 18 |
+
|
| 19 |
+
frame_paths = [k.get("image_path") for k in keyframes if k.get("image_path")]
|
| 20 |
+
montage_dir = out_dir / "montage"
|
| 21 |
+
montage_path = None
|
| 22 |
+
if frame_paths:
|
| 23 |
+
montage_path = generar_montage(frame_paths, montage_dir)
|
| 24 |
+
context = {
|
| 25 |
+
"informacion": [{k: v for k, v in fr.items() if k in ("start", "end", "ocr", "faces")} for fr in keyframes],
|
| 26 |
+
"face_identities": sorted(list(face_identities or set()))
|
| 27 |
+
}
|
| 28 |
+
try:
|
| 29 |
+
router = LLMRouter(cfg)
|
| 30 |
+
descs = router.vision_describe(frame_paths, context=context, model=model_name)
|
| 31 |
+
except Exception:
|
| 32 |
+
# Fallback a implementación local existente si falla el remoto
|
| 33 |
+
descs = describe_montage_sequence(
|
| 34 |
+
montage_path=str(montage_path),
|
| 35 |
+
n=len(frame_paths),
|
| 36 |
+
informacion=keyframes,
|
| 37 |
+
face_identities=face_identities or set(),
|
| 38 |
+
config_path=config_path or "config_veureu.yaml",
|
| 39 |
+
)
|
| 40 |
+
for i, fr in enumerate(keyframes):
|
| 41 |
+
if i < len(descs):
|
| 42 |
+
fr["description"] = descs[i]
|
| 43 |
+
return keyframes, str(montage_path) if montage_path else None
|
casting_loader.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# identity_encoding.py (updated to use libs/*)
|
| 2 |
+
# Veureu — Identity Encoder (faces, voices, scenarios)
|
| 3 |
+
# -----------------------------------------------------------------------------
|
| 4 |
+
# This script replaces the original `identity_encoding.py` but **reuses**
|
| 5 |
+
# as much as possible the functions already present in `libs/`.
|
| 6 |
+
# It respects the project's path structure (identities/*, scenarios, chroma_db,
|
| 7 |
+
# results) and maintains the classic pipeline:
|
| 8 |
+
# 1) index_faces (ChromaDB)
|
| 9 |
+
# 2) identity_features.csv
|
| 10 |
+
# 3) index_voices (ChromaDB)
|
| 11 |
+
# 4) scenarios_descriptions.csv
|
| 12 |
+
# 5) index_scenarios (ChromaDB)
|
| 13 |
+
# -----------------------------------------------------------------------------
|
| 14 |
+
from __future__ import annotations
|
| 15 |
+
import argparse
|
| 16 |
+
import csv
|
| 17 |
+
import logging
|
| 18 |
+
import sys
|
| 19 |
+
import uuid
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
| 23 |
+
|
| 24 |
+
# ============================ LOGGING ========================================
|
| 25 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 26 |
+
log = logging.getLogger("identity_encoding")
|
| 27 |
+
|
| 28 |
+
# ============================ DEPENDENCIES ===================================
|
| 29 |
+
# ChromaDB (persistente)
|
| 30 |
+
try:
|
| 31 |
+
import chromadb
|
| 32 |
+
from chromadb.config import Settings # noqa: F401
|
| 33 |
+
except Exception as e:
|
| 34 |
+
chromadb = None # type: ignore
|
| 35 |
+
log.error("No se pudo importar chromadb: %s", e)
|
| 36 |
+
|
| 37 |
+
from libs.vision_tools_salamandra import FaceAnalyzer
|
| 38 |
+
from collections import Counter
|
| 39 |
+
|
| 40 |
+
# Audio: reuse get_embedding from the existing pipeline
|
| 41 |
+
from libs.audio_tools_ana_2 import VoiceEmbedder
|
| 42 |
+
from libs.vision_tools_salamandra import FaceOfImageEmbedding
|
| 43 |
+
|
| 44 |
+
# Optional
|
| 45 |
+
try:
|
| 46 |
+
import numpy as np
|
| 47 |
+
except Exception:
|
| 48 |
+
np = None # type: ignore
|
| 49 |
+
|
| 50 |
+
# ============================ UTILITIES =====================================
|
| 51 |
+
IMG_EXT = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
|
| 52 |
+
AUD_EXT = {".wav", ".mp3", ".flac", ".m4a", ".ogg"}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def list_files(root: Path, exts: Iterable[str]) -> List[Path]:
|
| 56 |
+
root = Path(root)
|
| 57 |
+
if not root.exists():
|
| 58 |
+
return []
|
| 59 |
+
return [p for p in root.rglob('*') if p.suffix.lower() in exts]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def ensure_chroma(db_dir: Path):
|
| 63 |
+
if chromadb is None:
|
| 64 |
+
raise RuntimeError("chromadb no instalado. pip install chromadb")
|
| 65 |
+
db_dir.mkdir(parents=True, exist_ok=True)
|
| 66 |
+
|
| 67 |
+
# Nueva forma de crear un cliente persistente
|
| 68 |
+
client = chromadb.Client(Settings(
|
| 69 |
+
chroma_db_impl="duckdb+parquet",
|
| 70 |
+
persist_directory=str(db_dir)
|
| 71 |
+
))
|
| 72 |
+
return client
|
| 73 |
+
|
| 74 |
+
# ============================ 1) INDEX FACES =================================
|
| 75 |
+
def build_faces_index(faces_dir: Path, client, collection_name: str = "index_faces",
|
| 76 |
+
deepface_model: str = 'Facenet512', drop: bool = True) -> int:
|
| 77 |
+
# idempotency
|
| 78 |
+
if collection_name in [c.name for c in client.list_collections()] and drop:
|
| 79 |
+
client.delete_collection(name=collection_name)
|
| 80 |
+
col = client.get_or_create_collection(name=collection_name)
|
| 81 |
+
|
| 82 |
+
be = FaceOfImageEmbedding(deepface_model=deepface_model)
|
| 83 |
+
count = 0
|
| 84 |
+
registered_identities = set() # 👈 para no repetir nombres
|
| 85 |
+
|
| 86 |
+
for ident_dir in sorted(Path(faces_dir).iterdir() if Path(faces_dir).exists() else []):
|
| 87 |
+
if not ident_dir.is_dir():
|
| 88 |
+
continue
|
| 89 |
+
ident = ident_dir.name
|
| 90 |
+
for img_path in list_files(ident_dir, IMG_EXT):
|
| 91 |
+
embeddings = be.encode_image(img_path)
|
| 92 |
+
if embeddings is None:
|
| 93 |
+
log.warning("No face embedding in %s", img_path)
|
| 94 |
+
continue
|
| 95 |
+
|
| 96 |
+
# Aplanar para que cada embedding sea una lista de floats
|
| 97 |
+
for e in (embeddings if isinstance(embeddings[0], list) else [embeddings]):
|
| 98 |
+
uid = str(uuid.uuid4())
|
| 99 |
+
col.add(ids=[uid], embeddings=[e], metadatas=[{"identity": ident, "path": str(img_path)}])
|
| 100 |
+
count += 1
|
| 101 |
+
registered_identities.add(ident) # 👈 guardamos el nombre
|
| 102 |
+
|
| 103 |
+
# Mensajes finales
|
| 104 |
+
print("Ha acabado de crear la base de datos.")
|
| 105 |
+
print(f"Total de embeddings guardados: {count}")
|
| 106 |
+
print("Identidades registradas:")
|
| 107 |
+
for name in sorted(registered_identities):
|
| 108 |
+
print(f" - {name}")
|
| 109 |
+
|
| 110 |
+
log.info("index_faces => %d embeddings", count)
|
| 111 |
+
return count
|
| 112 |
+
|
| 113 |
+
# ===================== 2) IDENTITY FEATURES CSV ==============================
|
| 114 |
+
|
| 115 |
+
def aggregate_face_attributes(faces_dir: Path, out_csv: Path) -> int:
|
| 116 |
+
"""
|
| 117 |
+
Procesa un directorio de caras por identidad y genera un CSV con edad y género.
|
| 118 |
+
Usa FaceAnalyzer para extraer atributos.
|
| 119 |
+
"""
|
| 120 |
+
# Inicializa el analizador
|
| 121 |
+
from libs.vision_tools_salamandra import FaceAnalyzer
|
| 122 |
+
analyzer = FaceAnalyzer()
|
| 123 |
+
|
| 124 |
+
rows: List[Dict[str, Any]] = []
|
| 125 |
+
|
| 126 |
+
faces_dir = Path(faces_dir)
|
| 127 |
+
if not faces_dir.exists() or not faces_dir.is_dir():
|
| 128 |
+
log.error("El directorio de caras no existe: %s", faces_dir)
|
| 129 |
+
return 0
|
| 130 |
+
|
| 131 |
+
def most_common(lst, default="unknown"):
|
| 132 |
+
return Counter(lst).most_common(1)[0][0] if lst else default
|
| 133 |
+
|
| 134 |
+
# Itera sobre cada identidad
|
| 135 |
+
for ident_dir in sorted(faces_dir.iterdir()):
|
| 136 |
+
if not ident_dir.is_dir():
|
| 137 |
+
continue
|
| 138 |
+
ident = ident_dir.name
|
| 139 |
+
attrs: List[Dict[str, Any]] = []
|
| 140 |
+
|
| 141 |
+
log.info("Procesando identidad: %s", ident)
|
| 142 |
+
|
| 143 |
+
for img_path in sorted(list_files(ident_dir, IMG_EXT)):
|
| 144 |
+
try:
|
| 145 |
+
data = analyzer.analyze_image(str(img_path))
|
| 146 |
+
if data:
|
| 147 |
+
attrs.append(data)
|
| 148 |
+
except Exception as e:
|
| 149 |
+
log.warning("Error procesando imagen %s: %s", img_path, e)
|
| 150 |
+
|
| 151 |
+
genders = [a.get("gender", "unknown") for a in attrs]
|
| 152 |
+
ages = [a.get("age", "unknown") for a in attrs]
|
| 153 |
+
|
| 154 |
+
# Contexto opcional por identidad
|
| 155 |
+
context_txt = (faces_dir.parent / "context" / f"{ident}.txt")
|
| 156 |
+
identity_context = context_txt.read_text(encoding="utf-8").strip() if context_txt.exists() else ""
|
| 157 |
+
|
| 158 |
+
rows.append({
|
| 159 |
+
"identity": ident,
|
| 160 |
+
"samples": len(attrs),
|
| 161 |
+
"gender": most_common(genders),
|
| 162 |
+
"age_bucket": most_common(ages),
|
| 163 |
+
"identity_context": identity_context,
|
| 164 |
+
})
|
| 165 |
+
|
| 166 |
+
log.info("Procesados %d atributos para %s", len(attrs), ident)
|
| 167 |
+
|
| 168 |
+
# Guardar CSV
|
| 169 |
+
out_csv.parent.mkdir(parents=True, exist_ok=True)
|
| 170 |
+
with out_csv.open("w", newline='', encoding="utf-8") as f:
|
| 171 |
+
fieldnames = list(rows[0].keys()) if rows else ["identity", "identity_context"]
|
| 172 |
+
writer = csv.DictWriter(f, fieldnames=fieldnames)
|
| 173 |
+
writer.writeheader()
|
| 174 |
+
writer.writerows(rows)
|
| 175 |
+
|
| 176 |
+
log.info("CSV generado correctamente: %s", out_csv)
|
| 177 |
+
return len(rows)
|
| 178 |
+
|
| 179 |
+
# ============================ 3) INDEX VOICES =================================
|
| 180 |
+
from pydub import AudioSegment # agregar al inicio de tu archivo junto a otros imports
|
| 181 |
+
|
| 182 |
+
def build_voices_index(voices_dir: Path, client, collection_name: str = "index_voices", drop: bool = True) -> int:
|
| 183 |
+
if collection_name in [c.name for c in client.list_collections()] and drop:
|
| 184 |
+
client.delete_collection(name=collection_name)
|
| 185 |
+
col = client.get_or_create_collection(name=collection_name)
|
| 186 |
+
|
| 187 |
+
ve = VoiceEmbedder()
|
| 188 |
+
count = 0
|
| 189 |
+
|
| 190 |
+
for ident_dir in sorted(Path(voices_dir).iterdir() if Path(voices_dir).exists() else []):
|
| 191 |
+
if not ident_dir.is_dir():
|
| 192 |
+
continue
|
| 193 |
+
ident = ident_dir.name
|
| 194 |
+
for wav_path in list_files(ident_dir, AUD_EXT):
|
| 195 |
+
# Intentar embed directamente
|
| 196 |
+
try:
|
| 197 |
+
emb = ve.embed(wav_path)
|
| 198 |
+
except Exception as e:
|
| 199 |
+
log.warning("Error leyendo audio %s: %s. Intentando reconvertir...", wav_path, e)
|
| 200 |
+
# Reconversión automática a WAV PCM
|
| 201 |
+
try:
|
| 202 |
+
audio = AudioSegment.from_file(wav_path)
|
| 203 |
+
fixed_path = wav_path.with_name(wav_path.stem + "_fixed.wav")
|
| 204 |
+
audio.export(fixed_path, format="wav")
|
| 205 |
+
log.info("Archivo convertido a WAV compatible: %s", fixed_path)
|
| 206 |
+
emb = ve.embed(fixed_path)
|
| 207 |
+
except Exception as e2:
|
| 208 |
+
log.error("No se pudo generar embedding tras reconversión para %s: %s", wav_path, e2)
|
| 209 |
+
continue # saltar este archivo
|
| 210 |
+
if emb is None:
|
| 211 |
+
log.warning("No voice embedding en %s", wav_path)
|
| 212 |
+
continue
|
| 213 |
+
uid = str(uuid.uuid4())
|
| 214 |
+
col.add(ids=[uid], embeddings=[emb], metadatas=[{"identity": ident, "path": str(wav_path)}])
|
| 215 |
+
count += 1
|
| 216 |
+
|
| 217 |
+
log.info("index_voices => %d embeddings", count)
|
| 218 |
+
return count
|
| 219 |
+
|
| 220 |
+
# ============================ 4) SCENARIOS ==================================
|
| 221 |
+
@dataclass
|
| 222 |
+
class VisionClient:
|
| 223 |
+
provider: str = "none" # placeholder to plug in an LLM if desired
|
| 224 |
+
|
| 225 |
+
def describe(self, image_path: str, prompt: str) -> str:
|
| 226 |
+
return (f"Automatic description (placeholder) for {Path(image_path).name}. "
|
| 227 |
+
f"{prompt}")
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
class TextEmbedder:
|
| 231 |
+
"""Text embeddings with Sentence-Transformers if available; fallback to TF-IDF."""
|
| 232 |
+
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
|
| 233 |
+
self.kind = "tfidf"; self.model = None; self.vectorizer = None
|
| 234 |
+
try:
|
| 235 |
+
from sentence_transformers import SentenceTransformer
|
| 236 |
+
self.model = SentenceTransformer(model_name)
|
| 237 |
+
self.kind = "sbert"
|
| 238 |
+
except Exception:
|
| 239 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 240 |
+
self.vectorizer = TfidfVectorizer(max_features=768)
|
| 241 |
+
|
| 242 |
+
def fit(self, texts: List[str]):
|
| 243 |
+
if self.vectorizer is not None:
|
| 244 |
+
self.vectorizer.fit(texts)
|
| 245 |
+
|
| 246 |
+
def encode(self, texts: List[str]) -> List[List[float]]:
|
| 247 |
+
if self.model is not None:
|
| 248 |
+
arr = self.model.encode(texts, convert_to_numpy=True)
|
| 249 |
+
return arr.astype(float).tolist()
|
| 250 |
+
X = self.vectorizer.transform(texts) if self.vectorizer is not None else None
|
| 251 |
+
return (X.toarray().astype(float).tolist() if X is not None else [[0.0]*128 for _ in texts])
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def build_scenarios_descriptions(scenarios_dir: Path, out_csv: Path, vision: VisionClient,
|
| 255 |
+
sample_per_scenario: int = 12) -> Tuple[int, List[Dict[str, Any]]]:
|
| 256 |
+
rows: List[Dict[str, Any]] = []
|
| 257 |
+
for scen_dir in sorted(Path(scenarios_dir).iterdir() if Path(scenarios_dir).exists() else []):
|
| 258 |
+
if not scen_dir.is_dir():
|
| 259 |
+
continue
|
| 260 |
+
scen = scen_dir.name
|
| 261 |
+
descs: List[str] = []
|
| 262 |
+
imgs = list_files(scen_dir, IMG_EXT)[:sample_per_scenario]
|
| 263 |
+
for img in imgs:
|
| 264 |
+
d = vision.describe(str(img), prompt="Describe location, time period, lighting, and atmosphere without mentioning people or time of day.")
|
| 265 |
+
if d:
|
| 266 |
+
descs.append(d)
|
| 267 |
+
if not descs:
|
| 268 |
+
descs = [f"Scenario {scen} (no images)"]
|
| 269 |
+
rows.append({"scenario": scen, "descriptions": " \n".join(descs)})
|
| 270 |
+
|
| 271 |
+
out_csv.parent.mkdir(parents=True, exist_ok=True)
|
| 272 |
+
with out_csv.open("w", newline='', encoding="utf-8") as f:
|
| 273 |
+
w = csv.DictWriter(f, fieldnames=["scenario", "descriptions"])
|
| 274 |
+
w.writeheader(); w.writerows(rows)
|
| 275 |
+
log.info("scenarios_descriptions => %s", out_csv)
|
| 276 |
+
return len(rows), rows
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def build_scenarios_index(client, rows: List[Dict[str, Any]], embedder: TextEmbedder,
|
| 280 |
+
collection_name: str = "index_scenarios", drop: bool = True) -> int:
|
| 281 |
+
texts = [r["descriptions"] for r in rows]
|
| 282 |
+
embedder.fit(texts)
|
| 283 |
+
embs = embedder.encode(texts)
|
| 284 |
+
|
| 285 |
+
if collection_name in [c.name for c in client.list_collections()] and drop:
|
| 286 |
+
client.delete_collection(name=collection_name)
|
| 287 |
+
col = client.get_or_create_collection(name=collection_name)
|
| 288 |
+
|
| 289 |
+
for r, e in zip(rows, embs):
|
| 290 |
+
col.add(ids=[r["scenario"]], embeddings=[e], metadatas=[{"scenario": r["scenario"]}])
|
| 291 |
+
log.info("index_scenarios => %d descriptions", len(rows))
|
| 292 |
+
return len(rows)
|
| 293 |
+
|
| 294 |
+
# ================================ CLI ========================================
|
| 295 |
+
|
| 296 |
+
def main():
|
| 297 |
+
ap = argparse.ArgumentParser(description="Veureu — Build identity/scenario indices and CSVs")
|
| 298 |
+
ap.add_argument('--faces_dir', default='identities/faces', help='Root directory of face images per identity')
|
| 299 |
+
ap.add_argument('--voices_dir', default='identities/voices', help='Root directory of voice clips per identity')
|
| 300 |
+
ap.add_argument('--scenarios_dir', default='scenarios', help='Root directory of scenario folders with images')
|
| 301 |
+
ap.add_argument('--db_dir', default='chroma_db', help='ChromaDB persistence directory')
|
| 302 |
+
ap.add_argument('--out_dir', default='results', help='Output directory for CSVs')
|
| 303 |
+
ap.add_argument('--drop_collections', action='store_true', help='Delete collections if they exist before rebuilding')
|
| 304 |
+
ap.add_argument('--deepface_model', default='Facenet512', help='DeepFace model to use as fallback')
|
| 305 |
+
ap.add_argument('--scenario_samples', type=int, default=12, help='Number of images per scenario to describe')
|
| 306 |
+
|
| 307 |
+
args = ap.parse_args()
|
| 308 |
+
|
| 309 |
+
faces_dir = Path(args.faces_dir)
|
| 310 |
+
voices_dir = Path(args.voices_dir)
|
| 311 |
+
print(voices_dir)
|
| 312 |
+
scenarios_dir = Path(args.scenarios_dir)
|
| 313 |
+
out_dir = Path(args.out_dir); out_dir.mkdir(parents=True, exist_ok=True)
|
| 314 |
+
|
| 315 |
+
client = ensure_chroma(Path(args.db_dir))
|
| 316 |
+
|
| 317 |
+
# 1) Faces index
|
| 318 |
+
build_faces_index(faces_dir, client, collection_name="index_faces", deepface_model=args.deepface_model, drop=args.drop_collections)
|
| 319 |
+
|
| 320 |
+
# 2) Identity features CSV
|
| 321 |
+
#id_csv = out_dir / 'identity_features.csv'
|
| 322 |
+
#aggregate_face_attributes(faces_dir, id_csv)
|
| 323 |
+
|
| 324 |
+
# 3) Voices index
|
| 325 |
+
build_voices_index(voices_dir, client, collection_name="index_voices", drop=args.drop_collections)
|
| 326 |
+
|
| 327 |
+
# 4) Scenarios descriptions
|
| 328 |
+
#vision = VisionClient()
|
| 329 |
+
#scen_csv = out_dir / 'scenarios_descriptions.csv'
|
| 330 |
+
#_, scen_rows = build_scenarios_descriptions(scenarios_dir, scen_csv, vision, sample_per_scenario=args.scenario_samples)
|
| 331 |
+
|
| 332 |
+
# 5) Scenarios index
|
| 333 |
+
#embedder = TextEmbedder()
|
| 334 |
+
#build_scenarios_index(client, scen_rows, embedder, collection_name="index_scenarios", drop=args.drop_collections)
|
| 335 |
+
|
| 336 |
+
log.info("✅ Identity encoding completed.")
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
if __name__ == '__main__' and '--video' not in sys.argv:
|
| 340 |
+
main()
|
config.yaml
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ===========================
|
| 2 |
+
# Veureu Engine – config.yaml
|
| 3 |
+
# ===========================
|
| 4 |
+
|
| 5 |
+
engine:
|
| 6 |
+
# Salida de artefactos
|
| 7 |
+
output_root: "results"
|
| 8 |
+
# Persistencia de índices vectoriales
|
| 9 |
+
database:
|
| 10 |
+
enabled: true
|
| 11 |
+
persist_directory: "chroma_db"
|
| 12 |
+
enable_face_recognition: true
|
| 13 |
+
enable_voice_recognition: true
|
| 14 |
+
face_collection: "index_faces"
|
| 15 |
+
voice_collection: "index_voices"
|
| 16 |
+
|
| 17 |
+
# Jobs asíncronos (si implementas el patrón de cola)
|
| 18 |
+
jobs:
|
| 19 |
+
enabled: true
|
| 20 |
+
max_workers: 1 # Ajusta según recursos del Space
|
| 21 |
+
result_ttl_seconds: 86400 # 1 día
|
| 22 |
+
|
| 23 |
+
api:
|
| 24 |
+
cors_allow_origins: ["*"]
|
| 25 |
+
# Tiempo máximo (segundos) de una petición síncrona (si usas el endpoint sync)
|
| 26 |
+
sync_timeout_seconds: 3600
|
| 27 |
+
|
| 28 |
+
video_processing:
|
| 29 |
+
# Metadatos de extracción de frames
|
| 30 |
+
keyframes:
|
| 31 |
+
# Si tu extractor condicional usa umbrales, puedes incluirlos aquí:
|
| 32 |
+
conditional_extraction:
|
| 33 |
+
enable: true
|
| 34 |
+
# ejemplos de parámetros (ajústalos a tu extractor real)
|
| 35 |
+
min_scene_length_seconds: 1.5
|
| 36 |
+
difference_threshold: 28.0
|
| 37 |
+
|
| 38 |
+
frames_per_second:
|
| 39 |
+
enable: true
|
| 40 |
+
fps: 1.0 # "frecuencia de frames de análisis" (1 frame/segundo por defecto)
|
| 41 |
+
|
| 42 |
+
ocr:
|
| 43 |
+
engine: "tesseract" # o "easyocr"
|
| 44 |
+
language_hint: "spa" # si aplica
|
| 45 |
+
# Solo si usas pytesseract:
|
| 46 |
+
tesseract_cmd: "" # ruta binaria si no está en PATH
|
| 47 |
+
|
| 48 |
+
faces:
|
| 49 |
+
detector_model: "mtcnn" # ejemplar; ajústalo a tu vision_tools
|
| 50 |
+
embedding_model: "Facenet512" # usado en background_descriptor.FaceOfImageEmbedding
|
| 51 |
+
min_face_size: 32
|
| 52 |
+
detection_confidence: 0.85
|
| 53 |
+
|
| 54 |
+
ocr_clustering:
|
| 55 |
+
method: "sequential_similarity"
|
| 56 |
+
sentence_transformer: "all-MiniLM-L6-v2"
|
| 57 |
+
similarity_threshold: 0.60 # "número de clusters" implícito por umbral (más alto ⇒ menos clusters)
|
| 58 |
+
|
| 59 |
+
audio_processing:
|
| 60 |
+
# El ASR principal será remoto si seleccionas whisper catalan (ver models/routing)
|
| 61 |
+
diarization:
|
| 62 |
+
enabled: true
|
| 63 |
+
# ejemplo de parámetros de diarización si los usas en audio_tools
|
| 64 |
+
min_speaker_duration: 0.8
|
| 65 |
+
max_speakers: 8
|
| 66 |
+
|
| 67 |
+
speaker_embedding:
|
| 68 |
+
enabled: true
|
| 69 |
+
# umbral para asig. de identidad en voice_collection
|
| 70 |
+
speaker_identification:
|
| 71 |
+
distance_threshold: 0.40
|
| 72 |
+
|
| 73 |
+
# Si mantienes transcripción local para otros idiomas/modelos:
|
| 74 |
+
local_asr:
|
| 75 |
+
enabled: false # usarás remoto para whisper catalan
|
| 76 |
+
model: "" # (vacío porque lo gestionas vía Spaces)
|
| 77 |
+
|
| 78 |
+
background_descriptor:
|
| 79 |
+
# Parámetros del montaje y descripción con LLM
|
| 80 |
+
montage:
|
| 81 |
+
enable: true
|
| 82 |
+
max_frames: 12 # tope de frames en el collage/descripcion
|
| 83 |
+
grid: "auto" # o 3x4, etc.
|
| 84 |
+
|
| 85 |
+
description:
|
| 86 |
+
model: "salamandra-vision" # puede ser "salamandra-vision" o "gpt-4o-mini"
|
| 87 |
+
max_tokens: 512
|
| 88 |
+
temperature: 0.2
|
| 89 |
+
# Si hay identidades detectadas, se pasan como hints (ya lo hace tu pipeline)
|
| 90 |
+
|
| 91 |
+
identity:
|
| 92 |
+
# Reglas de mapeo temporal y enriquecimiento
|
| 93 |
+
timeline_mapping:
|
| 94 |
+
per_second_frames_source: "frames_per_second"
|
| 95 |
+
attach_faces_to:
|
| 96 |
+
- "keyframes"
|
| 97 |
+
- "audio_segments"
|
| 98 |
+
out_key: "persona"
|
| 99 |
+
|
| 100 |
+
narration:
|
| 101 |
+
model: "salamandra-instruct" # "salamandra-instruct" | "gpt-4o-mini"
|
| 102 |
+
une_guidelines_path: "UNE_153010.txt"
|
| 103 |
+
# Restricciones temporales (para UNE-153010)
|
| 104 |
+
timing:
|
| 105 |
+
max_ad_duration_ratio: 0.60 # proporción del hueco disponible que puede ocupar la AD
|
| 106 |
+
min_gap_seconds: 1.20
|
| 107 |
+
min_ad_seconds: 0.80
|
| 108 |
+
llm:
|
| 109 |
+
max_tokens: 1024
|
| 110 |
+
temperature: 0.2
|
| 111 |
+
|
| 112 |
+
models:
|
| 113 |
+
# Selección de modelos de alto nivel por tarea
|
| 114 |
+
instruct: "salamandra-instruct" # para NarrationSystem y otros textos
|
| 115 |
+
vision: "salamandra-vision" # para describir frames/montajes
|
| 116 |
+
tools: "salamandra-tools" # si necesitas funciones con tool-calling
|
| 117 |
+
asr: "whisper-catalan" # ASR catalán
|
| 118 |
+
|
| 119 |
+
# Enrutado: qué modelos se ejecutan REMOTO (vía otros Spaces)
|
| 120 |
+
routing:
|
| 121 |
+
use_remote_for:
|
| 122 |
+
- "salamandra-instruct"
|
| 123 |
+
- "salamandra-vision"
|
| 124 |
+
- "salamandra-tools"
|
| 125 |
+
- "whisper-catalan"
|
| 126 |
+
|
| 127 |
+
remote_spaces:
|
| 128 |
+
# Dónde llamar cuando models.routing decide “remoto”
|
| 129 |
+
user: "veureu"
|
| 130 |
+
|
| 131 |
+
endpoints:
|
| 132 |
+
# Nota: rellena las URLs reales cuando publiques los Spaces.
|
| 133 |
+
salamandra-instruct:
|
| 134 |
+
space: "schat"
|
| 135 |
+
base_url: "https://veureu-schat.hf.space"
|
| 136 |
+
client: "gradio" # "gradio" o "http"
|
| 137 |
+
predict_route: "/run/predict" # si usas gradio_client no necesitas ruta
|
| 138 |
+
|
| 139 |
+
salamandra-vision:
|
| 140 |
+
space: "svision"
|
| 141 |
+
base_url: "https://veureu-svision.hf.space"
|
| 142 |
+
client: "gradio"
|
| 143 |
+
predict_route: "/run/predict"
|
| 144 |
+
|
| 145 |
+
salamandra-tools:
|
| 146 |
+
space: "stools"
|
| 147 |
+
base_url: "https://veureu-stools.hf.space"
|
| 148 |
+
client: "gradio"
|
| 149 |
+
predict_route: "/run/predict"
|
| 150 |
+
|
| 151 |
+
whisper-catalan:
|
| 152 |
+
space: "ars"
|
| 153 |
+
base_url: "https://veureu-ars.hf.space"
|
| 154 |
+
client: "gradio"
|
| 155 |
+
predict_route: "/run/predict"
|
| 156 |
+
|
| 157 |
+
# Parámetros de red y robustez
|
| 158 |
+
http:
|
| 159 |
+
timeout_seconds: 120
|
| 160 |
+
retries: 3
|
| 161 |
+
backoff_seconds: 2.0
|
| 162 |
+
|
| 163 |
+
security:
|
| 164 |
+
# Si necesitas pasar tokens (p. ej., tokens del Hub o auth propia)
|
| 165 |
+
use_hf_token: true
|
| 166 |
+
hf_token_env: "HF_TOKEN" # nombre de la variable de entorno para el token
|
| 167 |
+
allow_insecure_tls: false
|
| 168 |
+
|
| 169 |
+
logging:
|
| 170 |
+
level: "INFO" # DEBUG | INFO | WARNING | ERROR
|
| 171 |
+
json: false
|
identity_manager.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =========================
|
| 2 |
+
# File: identity_manager.py
|
| 3 |
+
# =========================
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 6 |
+
|
| 7 |
+
from chromadb.api.types import Collection
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class IdentityManager:
|
| 11 |
+
"""
|
| 12 |
+
Encapsula toda la lógica de asignación de identidades (caras + voces)
|
| 13 |
+
y su proyección sobre frames, clips y SRT.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
def __init__(self, face_collection: Optional[Collection] = None, voice_collection: Optional[Collection] = None):
|
| 17 |
+
self.face_collection = face_collection
|
| 18 |
+
self.voice_collection = voice_collection
|
| 19 |
+
|
| 20 |
+
# --------------------------- Faces / Frames ---------------------------
|
| 21 |
+
def assign_faces_to_frames(
|
| 22 |
+
self,
|
| 23 |
+
frames: List[Dict[str, Any]],
|
| 24 |
+
) -> List[Dict[str, Any]]:
|
| 25 |
+
"""
|
| 26 |
+
`frames` es una lista de dicts con al menos: {image_path, start, end, faces:[{embedding?, bbox?}]}
|
| 27 |
+
Devuelve los mismos frames con `faces` enriquecidos con `identity` y `distance` si hay DB.
|
| 28 |
+
"""
|
| 29 |
+
if self.face_collection is None:
|
| 30 |
+
return frames
|
| 31 |
+
|
| 32 |
+
out = []
|
| 33 |
+
for fr in frames:
|
| 34 |
+
faces = fr.get("faces") or []
|
| 35 |
+
enr: List[Dict[str, Any]] = []
|
| 36 |
+
for f in faces:
|
| 37 |
+
emb = f.get("embedding") or f.get("vector")
|
| 38 |
+
if not emb:
|
| 39 |
+
enr.append(f)
|
| 40 |
+
continue
|
| 41 |
+
try:
|
| 42 |
+
q = self.face_collection.query(query_embeddings=[emb], n_results=1, include=["metadatas", "distances"]) # type: ignore
|
| 43 |
+
metas = q.get("metadatas", [[]])[0]
|
| 44 |
+
dists = q.get("distances", [[]])[0]
|
| 45 |
+
if metas:
|
| 46 |
+
md = metas[0] or {}
|
| 47 |
+
f = dict(f)
|
| 48 |
+
f["identity"] = md.get("identity") or md.get("name")
|
| 49 |
+
if dists:
|
| 50 |
+
f["distance"] = float(dists[0])
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
+
enr.append(f)
|
| 54 |
+
fr2 = dict(fr)
|
| 55 |
+
fr2["faces"] = enr
|
| 56 |
+
out.append(fr2)
|
| 57 |
+
return out
|
| 58 |
+
|
| 59 |
+
# --------------------------- Voices / Segments ------------------------
|
| 60 |
+
def assign_voices_to_segments(
|
| 61 |
+
self,
|
| 62 |
+
audio_segments: List[Dict[str, Any]],
|
| 63 |
+
distance_threshold: Optional[float] = None,
|
| 64 |
+
) -> List[Dict[str, Any]]:
|
| 65 |
+
"""
|
| 66 |
+
Añade `voice_vecinos` y `voice_identity` a cada segmento si hay colección de voz.
|
| 67 |
+
"""
|
| 68 |
+
if self.voice_collection is None:
|
| 69 |
+
return audio_segments
|
| 70 |
+
|
| 71 |
+
out = []
|
| 72 |
+
for a in audio_segments:
|
| 73 |
+
emb = a.get("voice_embedding")
|
| 74 |
+
if not emb:
|
| 75 |
+
out.append(a)
|
| 76 |
+
continue
|
| 77 |
+
try:
|
| 78 |
+
q = self.voice_collection.query(query_embeddings=[emb], n_results=3, include=["metadatas", "distances"]) # type: ignore
|
| 79 |
+
metas = q.get("metadatas", [[]])[0]
|
| 80 |
+
dists = q.get("distances", [[]])[0]
|
| 81 |
+
vecinos = []
|
| 82 |
+
top_id = None
|
| 83 |
+
top_dist = None
|
| 84 |
+
for m, d in zip(metas, dists):
|
| 85 |
+
name = (m or {}).get("identity") or (m or {}).get("name")
|
| 86 |
+
vecinos.append({"identity": name, "distance": float(d)})
|
| 87 |
+
if top_id is None:
|
| 88 |
+
top_id, top_dist = name, float(d)
|
| 89 |
+
a2 = dict(a)
|
| 90 |
+
a2["voice_vecinos"] = vecinos
|
| 91 |
+
if top_id is not None:
|
| 92 |
+
if distance_threshold is None or (top_dist is not None and top_dist <= distance_threshold):
|
| 93 |
+
a2["voice_identity"] = top_id
|
| 94 |
+
out.append(a2)
|
| 95 |
+
except Exception:
|
| 96 |
+
out.append(a)
|
| 97 |
+
return out
|
| 98 |
+
|
| 99 |
+
# --------------------------- Map to SRT/Timelines ---------------------
|
| 100 |
+
@staticmethod
|
| 101 |
+
def map_identities_over_ranges(
|
| 102 |
+
per_second_frames: List[Dict[str, Any]],
|
| 103 |
+
ranges: List[Dict[str, Any]],
|
| 104 |
+
key: str = "faces",
|
| 105 |
+
out_key: str = "persona",
|
| 106 |
+
) -> List[Dict[str, Any]]:
|
| 107 |
+
"""
|
| 108 |
+
Para cada rango temporal (keyframes, audio_segments, etc.), agrega quién aparece según los frames por segundo.
|
| 109 |
+
"""
|
| 110 |
+
out: List[Dict[str, Any]] = []
|
| 111 |
+
for rng in ranges:
|
| 112 |
+
s, e = float(rng.get("start", 0.0)), float(rng.get("end", 0.0))
|
| 113 |
+
present = []
|
| 114 |
+
for fr in per_second_frames:
|
| 115 |
+
fs, fe = float(fr.get("start", 0.0)), float(fr.get("end", 0.0))
|
| 116 |
+
if fe <= s or fs >= e:
|
| 117 |
+
continue
|
| 118 |
+
for f in fr.get(key) or []:
|
| 119 |
+
ident = f.get("identity")
|
| 120 |
+
if ident and ident not in present:
|
| 121 |
+
present.append(ident)
|
| 122 |
+
r2 = dict(rng)
|
| 123 |
+
r2[out_key] = present
|
| 124 |
+
out.append(r2)
|
| 125 |
+
return out
|
llm_router.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
# ============================
|
| 3 |
+
# File: llm_router.py
|
| 4 |
+
# ============================
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
from typing import Any, Dict, List, Optional
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import yaml
|
| 9 |
+
|
| 10 |
+
from remote_clients import InstructClient, VisionClient, ToolsClient, ASRClient
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_yaml(path: str) -> Dict[str, Any]:
|
| 14 |
+
p = Path(path)
|
| 15 |
+
if not p.exists():
|
| 16 |
+
return {}
|
| 17 |
+
return yaml.safe_load(p.read_text(encoding="utf-8")) or {}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LLMRouter:
|
| 21 |
+
def __init__(self, cfg: Dict[str, Any]):
|
| 22 |
+
self.cfg = cfg
|
| 23 |
+
self.rem = cfg.get("models", {}).get("routing", {}).get("use_remote_for", [])
|
| 24 |
+
base_user = cfg.get("remote_spaces", {}).get("user", "veureu")
|
| 25 |
+
eps = cfg.get("remote_spaces", {}).get("endpoints", {})
|
| 26 |
+
token_enabled = cfg.get("security", {}).get("use_hf_token", False)
|
| 27 |
+
hf_token = os.getenv(cfg.get("security", {}).get("hf_token_env", "HF_TOKEN")) if token_enabled else None
|
| 28 |
+
|
| 29 |
+
def mk(endpoint_key: str, cls):
|
| 30 |
+
info = eps.get(endpoint_key, {})
|
| 31 |
+
base_url = info.get("base_url") or f"https://{base_user}-{info.get('space')}.hf.space"
|
| 32 |
+
client = cls(base_url=base_url, use_gradio=(info.get("client", "gradio") == "gradio"), hf_token=hf_token,
|
| 33 |
+
timeout=int(cfg.get("remote_spaces", {}).get("http", {}).get("timeout_seconds", 120)))
|
| 34 |
+
return client
|
| 35 |
+
|
| 36 |
+
self.clients = {
|
| 37 |
+
"salamandra-instruct": mk("salamandra-instruct", InstructClient),
|
| 38 |
+
"salamandra-vision": mk("salamandra-vision", VisionClient),
|
| 39 |
+
"salamandra-tools": mk("salamandra-tools", ToolsClient),
|
| 40 |
+
"whisper-catalan": mk("whisper-catalan", ASRClient),
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
# ---- INSTRUCT ----
|
| 44 |
+
def instruct(self, prompt: str, system: Optional[str] = None, model: str = "salamandra-instruct", **kwargs) -> str:
|
| 45 |
+
if model in self.rem:
|
| 46 |
+
return self.clients[model].generate(prompt, system=system, **kwargs) # type: ignore
|
| 47 |
+
# fallback local (p. ej., gpt-4o-mini o gpt-oss vía tu API local si existiera)
|
| 48 |
+
# Aquí podrías integrar una API OpenAI-compatible si la tienes.
|
| 49 |
+
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 50 |
+
|
| 51 |
+
# ---- VISION ----
|
| 52 |
+
def vision_describe(self, image_paths: List[str], context: Optional[Dict[str, Any]] = None, model: str = "salamandra-vision", **kwargs) -> List[str]:
|
| 53 |
+
if model in self.rem:
|
| 54 |
+
return self.clients[model].describe(image_paths, context=context, **kwargs) # type: ignore
|
| 55 |
+
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 56 |
+
|
| 57 |
+
# ---- TOOLS ----
|
| 58 |
+
def chat_with_tools(self, messages: List[Dict[str, str]], tools: Optional[List[Dict[str, Any]]] = None, model: str = "salamandra-tools", **kwargs) -> Dict[str, Any]:
|
| 59 |
+
if model in self.rem:
|
| 60 |
+
return self.clients[model].chat(messages, tools=tools, **kwargs) # type: ignore
|
| 61 |
+
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 62 |
+
|
| 63 |
+
# ---- ASR ----
|
| 64 |
+
def asr_transcribe(self, audio_path: str, model: str = "whisper-catalan", **kwargs) -> Dict[str, Any]:
|
| 65 |
+
if model in self.rem:
|
| 66 |
+
return self.clients[model].transcribe(audio_path, **kwargs) # type: ignore
|
| 67 |
+
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
main_api.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============================
|
| 2 |
+
# PATCH: main_api.py (FastAPI) – refine_narration via remote instruct when configured
|
| 3 |
+
# ============================
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
| 6 |
+
from fastapi.responses import JSONResponse
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import shutil
|
| 10 |
+
import uvicorn
|
| 11 |
+
import json
|
| 12 |
+
|
| 13 |
+
from video_processing import process_video_pipeline
|
| 14 |
+
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
|
| 15 |
+
from narration_system import NarrationSystem
|
| 16 |
+
from llm_router import load_yaml, LLMRouter
|
| 17 |
+
|
| 18 |
+
app = FastAPI(title="Veureu Engine API", version="0.2.0")
|
| 19 |
+
app.add_middleware(
|
| 20 |
+
CORSMiddleware,
|
| 21 |
+
allow_origins=["*"],
|
| 22 |
+
allow_credentials=True,
|
| 23 |
+
allow_methods=["*"],
|
| 24 |
+
allow_headers=["*"],
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
ROOT = Path("/tmp/veureu"); ROOT.mkdir(parents=True, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@app.get("/")
|
| 31 |
+
def root():
|
| 32 |
+
return {"ok": True, "service": "veureu-engine"}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@app.post("/process_video")
|
| 36 |
+
async def process_video(
|
| 37 |
+
video_file: UploadFile = File(...),
|
| 38 |
+
config_path: str = Form("config.yaml"),
|
| 39 |
+
out_root: str = Form("results"),
|
| 40 |
+
db_dir: str = Form("chroma_db"),
|
| 41 |
+
):
|
| 42 |
+
tmp_video = ROOT / video_file.filename
|
| 43 |
+
with tmp_video.open("wb") as f:
|
| 44 |
+
shutil.copyfileobj(video_file.file, f)
|
| 45 |
+
|
| 46 |
+
result = process_video_pipeline(str(tmp_video), config_path=config_path, out_root=out_root, db_dir=db_dir)
|
| 47 |
+
return JSONResponse(result)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@app.post("/load_casting")
|
| 51 |
+
async def load_casting(
|
| 52 |
+
faces_dir: str = Form("identities/faces"),
|
| 53 |
+
voices_dir: str = Form("identities/voices"),
|
| 54 |
+
db_dir: str = Form("chroma_db"),
|
| 55 |
+
drop_collections: bool = Form(False),
|
| 56 |
+
):
|
| 57 |
+
client = ensure_chroma(Path(db_dir))
|
| 58 |
+
n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
|
| 59 |
+
n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
|
| 60 |
+
return {"ok": True, "faces": n_faces, "voices": n_voices}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@app.post("/refine_narration")
|
| 64 |
+
async def refine_narration(
|
| 65 |
+
dialogues_srt: str = Form(...),
|
| 66 |
+
frame_descriptions_json: str = Form("[]"),
|
| 67 |
+
config_path: str = Form("config.yaml"),
|
| 68 |
+
):
|
| 69 |
+
cfg = load_yaml(config_path)
|
| 70 |
+
frames = json.loads(frame_descriptions_json)
|
| 71 |
+
|
| 72 |
+
# Si el instruct está configurado como remoto, usamos el router; si no, caemos en NarrationSystem existente
|
| 73 |
+
model_name = cfg.get("narration", {}).get("model", "salamandra-instruct")
|
| 74 |
+
use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", []))
|
| 75 |
+
|
| 76 |
+
if use_remote:
|
| 77 |
+
router = LLMRouter(cfg)
|
| 78 |
+
# Implementación simplificada de refinado usando el modelo instruct remoto.
|
| 79 |
+
# Mantén la lógica de prompts alineada con NarrationSystem si quieres 1:1.
|
| 80 |
+
system_msg = (
|
| 81 |
+
"Eres un sistema de audiodescripción que cumple UNE-153010. "
|
| 82 |
+
"Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. "
|
| 83 |
+
"Devuelve JSON con {narrative_text, srt_text}."
|
| 84 |
+
)
|
| 85 |
+
prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False)
|
| 86 |
+
try:
|
| 87 |
+
txt = router.instruct(prompt=prompt, system=system_msg, model=model_name)
|
| 88 |
+
out = {}
|
| 89 |
+
try:
|
| 90 |
+
out = json.loads(txt)
|
| 91 |
+
except Exception:
|
| 92 |
+
out = {"narrative_text": txt, "srt_text": ""}
|
| 93 |
+
return {
|
| 94 |
+
"narrative_text": out.get("narrative_text", ""),
|
| 95 |
+
"srt_text": out.get("srt_text", ""),
|
| 96 |
+
"approved": True,
|
| 97 |
+
"critic_feedback": "",
|
| 98 |
+
}
|
| 99 |
+
except Exception as e:
|
| 100 |
+
# Fallback a NarrationSystem local si falla el remoto
|
| 101 |
+
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
|
| 102 |
+
res = ns.run(dialogues_srt, frames)
|
| 103 |
+
return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback}
|
| 104 |
+
|
| 105 |
+
# Camino local (usa tu NarrationSystem actual)
|
| 106 |
+
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
|
| 107 |
+
out = ns.run(dialogues_srt, frames)
|
| 108 |
+
return {
|
| 109 |
+
"narrative_text": out.narrative_text,
|
| 110 |
+
"srt_text": out.srt_text,
|
| 111 |
+
"approved": out.approved,
|
| 112 |
+
"critic_feedback": out.critic_feedback,
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
narration_system.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# narrator_agent.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
from typing import Dict, List, Any
|
| 4 |
+
from langgraph.graph import StateGraph, END
|
| 5 |
+
from langchain_openai import ChatOpenAI
|
| 6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
import json
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class NarratorInput:
|
| 14 |
+
dialogues_srt: str
|
| 15 |
+
frame_descriptions: List[Dict[str, Any]] # [{"timestamp": "00:01:23,000", "description": "..."}]
|
| 16 |
+
une_guidelines_path: str
|
| 17 |
+
max_cycles: int = 3
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class NarratorOutput:
|
| 22 |
+
narrative_text: str
|
| 23 |
+
srt_text: str
|
| 24 |
+
critic_feedback: str | None = None
|
| 25 |
+
approved: bool = False
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class NarrationSystem:
|
| 29 |
+
"""
|
| 30 |
+
LangGraph-based multi-agent system:
|
| 31 |
+
- NarratorNode: generates narration + SRT according to UNE-153010
|
| 32 |
+
- CriticNode: evaluates conformity with UNE and coherence
|
| 33 |
+
- IdentityManagerNode: adjusts character identification if needed
|
| 34 |
+
- BackgroundDescriptorNode: fixes background/scene coherence
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(self, model_url: str, une_guidelines_path: str):
|
| 38 |
+
self.model_url = model_url
|
| 39 |
+
self.une_guidelines_path = une_guidelines_path
|
| 40 |
+
|
| 41 |
+
# LLM endpoints (each node could use a different deployment if desired)
|
| 42 |
+
self.narrator_llm = ChatOpenAI(base_url=model_url, model="gpt-4o-mini", temperature=0.6)
|
| 43 |
+
self.critic_llm = ChatOpenAI(base_url=model_url, model="gpt-4o-mini", temperature=0.3)
|
| 44 |
+
self.identity_llm = ChatOpenAI(base_url=model_url, model="gpt-4o-mini", temperature=0.4)
|
| 45 |
+
self.background_llm = ChatOpenAI(base_url=model_url, model="gpt-4o-mini", temperature=0.4)
|
| 46 |
+
|
| 47 |
+
with open(une_guidelines_path, "r", encoding="utf-8") as f:
|
| 48 |
+
self.une_rules = f.read()
|
| 49 |
+
|
| 50 |
+
# Build LangGraph workflow
|
| 51 |
+
self.graph = self.build_graph()
|
| 52 |
+
|
| 53 |
+
# -----------------------------------------------------------
|
| 54 |
+
# LangGraph nodes
|
| 55 |
+
# -----------------------------------------------------------
|
| 56 |
+
|
| 57 |
+
def narrator_node(self, state):
|
| 58 |
+
dialogues = state["dialogues_srt"]
|
| 59 |
+
frames = state["frame_descriptions"]
|
| 60 |
+
|
| 61 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 62 |
+
Eres un narrador de audiodescripciones según la norma UNE-153010.
|
| 63 |
+
Combina coherentemente los diálogos del siguiente SRT con las descripciones de escena dadas.
|
| 64 |
+
|
| 65 |
+
Sigue estas pautas:
|
| 66 |
+
- Genera una narración libre que integre ambos tipos de información.
|
| 67 |
+
- Evita redundancias o descripciones triviales.
|
| 68 |
+
- Limita la duración de las audiodescripciones para que quepan entre los diálogos.
|
| 69 |
+
- Devuelve **dos bloques**:
|
| 70 |
+
1️⃣ `NARRATION_TEXT`: narración libre completa en texto continuo.
|
| 71 |
+
2️⃣ `UNE_SRT`: subtítulos con los diálogos y las audiodescripciones UNE.
|
| 72 |
+
|
| 73 |
+
## DIÁLOGOS SRT
|
| 74 |
+
{dialogues}
|
| 75 |
+
|
| 76 |
+
## DESCRIPCIONES DE FRAMES
|
| 77 |
+
{frames}
|
| 78 |
+
""")
|
| 79 |
+
|
| 80 |
+
response = self.narrator_llm.invoke(prompt.format(dialogues=dialogues, frames=json.dumps(frames, ensure_ascii=False)))
|
| 81 |
+
return {"narration": response.content, "critic_feedback": None, "approved": False}
|
| 82 |
+
|
| 83 |
+
def critic_node(self, state):
|
| 84 |
+
narration = state["narration"]
|
| 85 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 86 |
+
Actúa como un revisor experto en audiodescripción conforme a la norma UNE-153010.
|
| 87 |
+
Evalúa el siguiente texto y SRT generados, detectando:
|
| 88 |
+
- Incoherencias en asignación de personajes.
|
| 89 |
+
- Errores en la identificación de escenarios.
|
| 90 |
+
- Desviaciones respecto a la norma UNE-153010.
|
| 91 |
+
- Incoherencias narrativas generales.
|
| 92 |
+
|
| 93 |
+
Devuelve:
|
| 94 |
+
- "APPROVED" si el resultado es conforme.
|
| 95 |
+
- En caso contrario, una lista JSON con observaciones clasificadas en:
|
| 96 |
+
- "characters"
|
| 97 |
+
- "scenes"
|
| 98 |
+
- "norma"
|
| 99 |
+
- "coherence"
|
| 100 |
+
|
| 101 |
+
## NORMA UNE-153010
|
| 102 |
+
{une_rules}
|
| 103 |
+
|
| 104 |
+
## TEXTO Y SRT A EVALUAR
|
| 105 |
+
{narration}
|
| 106 |
+
""")
|
| 107 |
+
|
| 108 |
+
response = self.critic_llm.invoke(prompt.format(une_rules=self.une_rules, narration=narration))
|
| 109 |
+
text = response.content.strip()
|
| 110 |
+
|
| 111 |
+
if "APPROVED" in text.upper():
|
| 112 |
+
return {"critic_feedback": None, "approved": True}
|
| 113 |
+
return {"critic_feedback": text, "approved": False}
|
| 114 |
+
|
| 115 |
+
def identity_node(self, state):
|
| 116 |
+
fb = state.get("critic_feedback", "")
|
| 117 |
+
narration = state["narration"]
|
| 118 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 119 |
+
El siguiente feedback señala incoherencias en personajes o diálogos.
|
| 120 |
+
Corrige únicamente esos aspectos manteniendo el resto igual.
|
| 121 |
+
|
| 122 |
+
## FEEDBACK
|
| 123 |
+
{fb}
|
| 124 |
+
|
| 125 |
+
## TEXTO ORIGINAL
|
| 126 |
+
{narration}
|
| 127 |
+
""")
|
| 128 |
+
response = self.identity_llm.invoke(prompt.format(fb=fb, narration=narration))
|
| 129 |
+
return {"narration": response.content}
|
| 130 |
+
|
| 131 |
+
def background_node(self, state):
|
| 132 |
+
fb = state.get("critic_feedback", "")
|
| 133 |
+
narration = state["narration"]
|
| 134 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 135 |
+
El siguiente feedback señala incoherencias en escenarios o contexto visual.
|
| 136 |
+
Ajusta las descripciones de fondo manteniendo el estilo y duración UNE.
|
| 137 |
+
|
| 138 |
+
## FEEDBACK
|
| 139 |
+
{fb}
|
| 140 |
+
|
| 141 |
+
## TEXTO ORIGINAL
|
| 142 |
+
{narration}
|
| 143 |
+
""")
|
| 144 |
+
response = self.background_llm.invoke(prompt.format(fb=fb, narration=narration))
|
| 145 |
+
return {"narration": response.content}
|
| 146 |
+
|
| 147 |
+
# -----------------------------------------------------------
|
| 148 |
+
# Graph assembly
|
| 149 |
+
# -----------------------------------------------------------
|
| 150 |
+
|
| 151 |
+
def build_graph(self):
|
| 152 |
+
g = StateGraph()
|
| 153 |
+
g.add_node("NarratorNode", self.narrator_node)
|
| 154 |
+
g.add_node("CriticNode", self.critic_node)
|
| 155 |
+
g.add_node("IdentityManagerNode", self.identity_node)
|
| 156 |
+
g.add_node("BackgroundDescriptorNode", self.background_node)
|
| 157 |
+
|
| 158 |
+
g.set_entry_point("NarratorNode")
|
| 159 |
+
g.add_edge("NarratorNode", "CriticNode")
|
| 160 |
+
g.add_conditional_edges(
|
| 161 |
+
"CriticNode",
|
| 162 |
+
lambda state: "done" if state.get("approved") else "retry",
|
| 163 |
+
{
|
| 164 |
+
"done": END,
|
| 165 |
+
"retry": "IdentityManagerNode",
|
| 166 |
+
},
|
| 167 |
+
)
|
| 168 |
+
g.add_edge("IdentityManagerNode", "BackgroundDescriptorNode")
|
| 169 |
+
g.add_edge("BackgroundDescriptorNode", "CriticNode")
|
| 170 |
+
|
| 171 |
+
return g.compile()
|
| 172 |
+
|
| 173 |
+
# -----------------------------------------------------------
|
| 174 |
+
# Run loop
|
| 175 |
+
# -----------------------------------------------------------
|
| 176 |
+
|
| 177 |
+
def run(self, dialogues_srt: str, frame_descriptions: List[Dict[str, Any]], max_cycles: int = 3) -> NarratorOutput:
|
| 178 |
+
state = {"dialogues_srt": dialogues_srt, "frame_descriptions": frame_descriptions}
|
| 179 |
+
result = self.graph.invoke(state)
|
| 180 |
+
return NarratorOutput(
|
| 181 |
+
narrative_text=result.get("narration", ""),
|
| 182 |
+
srt_text=result.get("narration", ""), # could be parsed separately if model emits dual block
|
| 183 |
+
critic_feedback=result.get("critic_feedback"),
|
| 184 |
+
approved=result.get("approved", False),
|
| 185 |
+
)
|
remote_clients.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============================
|
| 2 |
+
# File: remote_clients.py
|
| 3 |
+
# ============================
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
from typing import Any, Dict, List, Optional
|
| 6 |
+
import os, json, time
|
| 7 |
+
import requests
|
| 8 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
from gradio_client import Client as GradioClient
|
| 12 |
+
except Exception: # pragma: no cover
|
| 13 |
+
GradioClient = None # type: ignore
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class BaseRemoteClient:
|
| 17 |
+
def __init__(self, base_url: str, use_gradio: bool = True, hf_token: Optional[str] = None, timeout: int = 120):
|
| 18 |
+
self.base_url = base_url.rstrip("/")
|
| 19 |
+
self.use_gradio = use_gradio and GradioClient is not None
|
| 20 |
+
self.hf_token = hf_token or os.getenv("HF_TOKEN")
|
| 21 |
+
self.timeout = timeout
|
| 22 |
+
self._client = None
|
| 23 |
+
if self.use_gradio:
|
| 24 |
+
# GradioClient acepta base_url del Space público/privado
|
| 25 |
+
headers = {"Authorization": f"Bearer {self.hf_token}"} if self.hf_token else None
|
| 26 |
+
self._client = GradioClient(self.base_url, hf_token=self.hf_token, headers=headers)
|
| 27 |
+
|
| 28 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=1, max=8))
|
| 29 |
+
def _post_json(self, route: str, payload: Dict[str, Any]) -> Dict[str, Any]:
|
| 30 |
+
url = f"{self.base_url}{route}"
|
| 31 |
+
headers = {"Authorization": f"Bearer {self.hf_token}"} if self.hf_token else {}
|
| 32 |
+
r = requests.post(url, json=payload, headers=headers, timeout=self.timeout)
|
| 33 |
+
r.raise_for_status()
|
| 34 |
+
return r.json()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class InstructClient(BaseRemoteClient):
|
| 38 |
+
"""Cliente para Space de texto-instrucción (schat)."""
|
| 39 |
+
def generate(self, prompt: str, system: Optional[str] = None, **kwargs) -> str:
|
| 40 |
+
if self.use_gradio and self._client:
|
| 41 |
+
# Asume interfaz Gradio con un único campo de entrada de texto y devuelve texto.
|
| 42 |
+
# Ajusta "predict" y parámetros a tu Space real (inputs/outputs).
|
| 43 |
+
out = self._client.predict(prompt, api_name="/predict")
|
| 44 |
+
return str(out)
|
| 45 |
+
# HTTP genérico
|
| 46 |
+
data = {"prompt": prompt, "system": system, **kwargs}
|
| 47 |
+
res = self._post_json("/generate", data)
|
| 48 |
+
return res.get("text", "")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class VisionClient(BaseRemoteClient):
|
| 52 |
+
"""Cliente para Space de visión (svision)."""
|
| 53 |
+
def describe(self, image_paths: List[str], context: Optional[Dict[str, Any]] = None, **kwargs) -> List[str]:
|
| 54 |
+
if self.use_gradio and self._client:
|
| 55 |
+
# En muchos Spaces, Gradio acepta lista de imágenes + texto JSON.
|
| 56 |
+
out = self._client.predict(image_paths, json.dumps(context or {}), api_name="/predict")
|
| 57 |
+
# Debe devolver lista de descripciones (una por imagen)
|
| 58 |
+
if isinstance(out, str):
|
| 59 |
+
try:
|
| 60 |
+
return json.loads(out)
|
| 61 |
+
except Exception:
|
| 62 |
+
return [out]
|
| 63 |
+
return list(out)
|
| 64 |
+
data = {"images": image_paths, "context": context or {}, **kwargs}
|
| 65 |
+
res = self._post_json("/describe", data)
|
| 66 |
+
return res.get("descriptions", [])
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class ToolsClient(BaseRemoteClient):
|
| 70 |
+
"""Cliente para Space con tool-calling (stools)."""
|
| 71 |
+
def chat(self, messages: List[Dict[str, str]], tools: Optional[List[Dict[str, Any]]] = None, **kwargs) -> Dict[str, Any]:
|
| 72 |
+
if self.use_gradio and self._client:
|
| 73 |
+
out = self._client.predict(json.dumps(messages), json.dumps(tools or []), api_name="/predict")
|
| 74 |
+
if isinstance(out, str):
|
| 75 |
+
try:
|
| 76 |
+
return json.loads(out)
|
| 77 |
+
except Exception:
|
| 78 |
+
return {"text": out}
|
| 79 |
+
return out
|
| 80 |
+
data = {"messages": messages, "tools": tools or [], **kwargs}
|
| 81 |
+
return self._post_json("/chat", data)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class ASRClient(BaseRemoteClient):
|
| 85 |
+
"""Cliente para Space de ASR catalán (ars)."""
|
| 86 |
+
def transcribe(self, audio_path: str, **kwargs) -> Dict[str, Any]:
|
| 87 |
+
if self.use_gradio and self._client:
|
| 88 |
+
out = self._client.predict(audio_path, api_name="/predict")
|
| 89 |
+
if isinstance(out, str):
|
| 90 |
+
return {"text": out}
|
| 91 |
+
return out
|
| 92 |
+
files = {"file": open(audio_path, "rb")}
|
| 93 |
+
headers = {"Authorization": f"Bearer {self.hf_token}"} if self.hf_token else {}
|
| 94 |
+
r = requests.post(f"{self.base_url}/transcribe", files=files, data=kwargs, headers=headers, timeout=self.timeout)
|
| 95 |
+
r.raise_for_status()
|
| 96 |
+
return r.json()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,40 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
uvicorn[standard]==0.30.6
|
| 3 |
-
pydantic==2.9.2
|
| 4 |
python-multipart==0.0.9
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# API
|
| 2 |
+
fastapi==0.114.2
|
| 3 |
uvicorn[standard]==0.30.6
|
|
|
|
| 4 |
python-multipart==0.0.9
|
| 5 |
+
pydantic>=2.7,<3
|
| 6 |
+
PyYAML>=6.0
|
| 7 |
+
requests>=2.32
|
| 8 |
+
gradio_client>=0.16.0 # para invocar Spaces con interfaz Gradio
|
| 9 |
+
|
| 10 |
+
# Core utils
|
| 11 |
+
numpy>=1.26
|
| 12 |
+
Pillow>=10.4
|
| 13 |
+
opencv-python-headless==4.10.0.84
|
| 14 |
+
|
| 15 |
+
# OCR (elige según tu vision_tools)
|
| 16 |
+
pytesseract>=0.3 # si usas Tesseract
|
| 17 |
+
easyocr>=1.7 # si prefieres EasyOCR
|
| 18 |
+
|
| 19 |
+
# Audio / vídeo (ajusta según audio_tools)
|
| 20 |
+
librosa>=0.10
|
| 21 |
+
soundfile>=0.12
|
| 22 |
+
pydub>=0.25
|
| 23 |
+
ffmpeg-python>=0.2
|
| 24 |
+
# (recuerda que el binario de ffmpeg no llega por pip; si lo necesitas, usa Docker o runtime con ffmpeg instalado)
|
| 25 |
+
|
| 26 |
+
# ML ligero para clustering OCR
|
| 27 |
+
scikit-learn>=1.5
|
| 28 |
+
sentence-transformers>=3.0
|
| 29 |
+
transformers>=4.44
|
| 30 |
+
# Torch CPU (para sentence-transformers). En Spaces CPU, instala la variante de CPU:
|
| 31 |
+
torch>=2.3,<3
|
| 32 |
+
|
| 33 |
+
# Vector DB
|
| 34 |
+
chromadb>=0.5.4
|
| 35 |
+
|
| 36 |
+
# (Opcional) moviepy si tu vision_tools la usa
|
| 37 |
+
moviepy>=2.0
|
| 38 |
+
|
| 39 |
+
# (Opcional) herramientas de robustez
|
| 40 |
+
tenacity>=8.2
|
scripts/client_example.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =====================================
|
| 2 |
+
# File: client_example.py (opcional)
|
| 3 |
+
# =====================================
|
| 4 |
+
import requests
|
| 5 |
+
|
| 6 |
+
class VeureuEngineClient:
|
| 7 |
+
def __init__(self, base_url: str):
|
| 8 |
+
self.base = base_url.rstrip("/")
|
| 9 |
+
|
| 10 |
+
def process_video(self, video_path: str, **kwargs):
|
| 11 |
+
with open(video_path, "rb") as f:
|
| 12 |
+
files = {"video_file": (Path(video_path).name, f, "video/mp4")}
|
| 13 |
+
data = {"config_path": kwargs.get("config_path", "config_veureu.yaml"),
|
| 14 |
+
"out_root": kwargs.get("out_root", "results"),
|
| 15 |
+
"db_dir": kwargs.get("db_dir", "chroma_db")}
|
| 16 |
+
r = requests.post(f"{self.base}/process_video", files=files, data=data, timeout=3600)
|
| 17 |
+
r.raise_for_status()
|
| 18 |
+
return r.json()
|
| 19 |
+
|
| 20 |
+
def load_casting(self, faces_dir: str, voices_dir: str, db_dir: str = "chroma_db", drop_collections: bool = False):
|
| 21 |
+
data = {"faces_dir": faces_dir, "voices_dir": voices_dir, "db_dir": db_dir, "drop_collections": str(drop_collections)}
|
| 22 |
+
r = requests.post(f"{self.base}/load_casting", data=data, timeout=600)
|
| 23 |
+
r.raise_for_status(); return r.json()
|
| 24 |
+
|
| 25 |
+
def refine_narration(self, dialogues_srt: str, frame_descriptions: list, model_url: str, une_guidelines_path: str):
|
| 26 |
+
data = {
|
| 27 |
+
"dialogues_srt": dialogues_srt,
|
| 28 |
+
"frame_descriptions_json": json.dumps(frame_descriptions, ensure_ascii=False),
|
| 29 |
+
"model_url": model_url,
|
| 30 |
+
"une_guidelines_path": une_guidelines_path,
|
| 31 |
+
}
|
| 32 |
+
r = requests.post(f"{self.base}/refine_narration", data=data, timeout=600)
|
| 33 |
+
r.raise_for_status(); return r.json()
|
video_processing.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==================================
|
| 2 |
+
# File: video_processing_refactor.py
|
| 3 |
+
# (drop-in replacement for process_video_pipeline in video_processing.py)
|
| 4 |
+
# ==================================
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
from typing import Any, Dict, List, Optional
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import json
|
| 9 |
+
import cv2
|
| 10 |
+
import yaml
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
from chromadb.config import Settings
|
| 14 |
+
import chromadb
|
| 15 |
+
|
| 16 |
+
from audio_tools import process_audio_for_video
|
| 17 |
+
from background_descriptor import build_keyframes_and_per_second, describe_keyframes_with_llm
|
| 18 |
+
from identity_manager import IdentityManager
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
log = logging.getLogger("video_processing")
|
| 22 |
+
if not log.handlers:
|
| 23 |
+
h = logging.StreamHandler(); h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
|
| 24 |
+
log.addHandler(h)
|
| 25 |
+
log.setLevel(logging.INFO)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def _ensure_dir(p: Path) -> Path:
|
| 29 |
+
p.mkdir(parents=True, exist_ok=True)
|
| 30 |
+
return p
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def _ensure_chroma(db_dir: str | Path):
|
| 34 |
+
_ensure_dir(Path(db_dir))
|
| 35 |
+
return chromadb.Client(Settings(
|
| 36 |
+
persist_directory=str(db_dir),
|
| 37 |
+
chroma_db_impl="duckdb+parquet",
|
| 38 |
+
anonymized_telemetry=False,
|
| 39 |
+
))
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def load_config(path: str) -> Dict[str, Any]:
|
| 43 |
+
p = Path(path)
|
| 44 |
+
if not p.exists():
|
| 45 |
+
return {}
|
| 46 |
+
return yaml.safe_load(p.read_text(encoding="utf-8")) or {}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def process_video_pipeline(
|
| 50 |
+
video_path: str,
|
| 51 |
+
*,
|
| 52 |
+
config_path: str = "config_veureu.yaml",
|
| 53 |
+
out_root: str = "results",
|
| 54 |
+
db_dir: str = "chroma_db",
|
| 55 |
+
) -> Dict[str, Any]:
|
| 56 |
+
cfg = load_config(config_path)
|
| 57 |
+
out_dir = _ensure_dir(Path(out_root) / Path(video_path).stem)
|
| 58 |
+
|
| 59 |
+
# Metadatos del vídeo
|
| 60 |
+
cap = cv2.VideoCapture(str(video_path))
|
| 61 |
+
if not cap.isOpened():
|
| 62 |
+
raise RuntimeError(f"Cannot open video: {video_path}")
|
| 63 |
+
fps = float(cap.get(cv2.CAP_PROP_FPS)) or 25.0
|
| 64 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
|
| 65 |
+
duration = (total_frames / fps) if total_frames > 0 else 0.0
|
| 66 |
+
cap.release()
|
| 67 |
+
|
| 68 |
+
# DB Chroma opcional
|
| 69 |
+
face_col = voice_col = None
|
| 70 |
+
if cfg.get("database", {}).get("enabled", True):
|
| 71 |
+
client = _ensure_chroma(cfg.get("database", {}).get("persist_directory", db_dir))
|
| 72 |
+
if cfg.get("database", {}).get("enable_face_recognition", True):
|
| 73 |
+
try:
|
| 74 |
+
face_col = client.get_collection(cfg.get("database", {}).get("face_collection", "index_faces"))
|
| 75 |
+
except Exception:
|
| 76 |
+
face_col = None
|
| 77 |
+
if cfg.get("database", {}).get("enable_voice_recognition", True):
|
| 78 |
+
try:
|
| 79 |
+
voice_col = client.get_collection(cfg.get("database", {}).get("voice_collection", "index_voices"))
|
| 80 |
+
except Exception:
|
| 81 |
+
voice_col = None
|
| 82 |
+
|
| 83 |
+
# 1) Background descriptor (frames, OCR, descripciones)
|
| 84 |
+
keyframes, per_second, _ = build_keyframes_and_per_second(video_path, out_dir, cfg, face_collection=face_col)
|
| 85 |
+
|
| 86 |
+
# Ajustar `end` de cada keyframe con la duración total
|
| 87 |
+
for i in range(len(keyframes)):
|
| 88 |
+
if i < len(keyframes) - 1:
|
| 89 |
+
keyframes[i]["end"] = keyframes[i + 1]["start"]
|
| 90 |
+
else:
|
| 91 |
+
keyframes[i]["end"] = round(duration, 2)
|
| 92 |
+
|
| 93 |
+
# 2) Descripción con LLM
|
| 94 |
+
face_identities = {f.get("identity") for fr in per_second for f in (fr.get("faces") or []) if f.get("identity")}
|
| 95 |
+
keyframes, montage_path = describe_keyframes_with_llm(keyframes, out_dir, face_identities=face_identities, config_path=config_path)
|
| 96 |
+
|
| 97 |
+
# 3) Audio pipeline
|
| 98 |
+
audio_segments, srt_unmodified_path, full_transcription = process_audio_for_video(video_path=str(video_path), out_dir=out_dir, cfg=cfg, voice_collection=voice_col)
|
| 99 |
+
|
| 100 |
+
# 4) Identity manager: enriquecer frames y clips
|
| 101 |
+
im = IdentityManager(face_collection=face_col, voice_collection=voice_col)
|
| 102 |
+
per_second = im.assign_faces_to_frames(per_second)
|
| 103 |
+
keyframes = im.assign_faces_to_frames(keyframes)
|
| 104 |
+
audio_segments = im.assign_voices_to_segments(audio_segments, distance_threshold=cfg.get("voice_processing", {}).get("speaker_identification", {}).get("distance_threshold"))
|
| 105 |
+
|
| 106 |
+
# 5) Mapear identidades a rangos
|
| 107 |
+
keyframes = im.map_identities_over_ranges(per_second, keyframes, key="faces", out_key="persona")
|
| 108 |
+
audio_segments = im.map_identities_over_ranges(per_second, audio_segments, key="faces", out_key="persona")
|
| 109 |
+
|
| 110 |
+
# 6) Export analysis.json
|
| 111 |
+
frames_analysis = [{
|
| 112 |
+
"frame_number": fr.get("id"),
|
| 113 |
+
"start": fr.get("start"),
|
| 114 |
+
"end": fr.get("end"),
|
| 115 |
+
"ocr": fr.get("ocr", ""),
|
| 116 |
+
"persona": fr.get("persona", []),
|
| 117 |
+
"description": fr.get("description", ""),
|
| 118 |
+
} for fr in keyframes]
|
| 119 |
+
|
| 120 |
+
analysis = {
|
| 121 |
+
"frames": frames_analysis,
|
| 122 |
+
"audio_segments": [{k: v for k, v in seg.items() if k != "voice_embedding"} for seg in audio_segments],
|
| 123 |
+
"full_transcription": full_transcription,
|
| 124 |
+
}
|
| 125 |
+
analysis_path = out_dir / f"{Path(video_path).stem}_analysis.json"
|
| 126 |
+
analysis_path.write_text(json.dumps(analysis, indent=2, ensure_ascii=False), encoding="utf-8")
|
| 127 |
+
|
| 128 |
+
return {
|
| 129 |
+
"output_dir": str(out_dir),
|
| 130 |
+
"files": {
|
| 131 |
+
"montage_path": montage_path,
|
| 132 |
+
"srt_path": srt_unmodified_path,
|
| 133 |
+
"analysis_path": str(analysis_path),
|
| 134 |
+
},
|
| 135 |
+
"stats": {
|
| 136 |
+
"duration_seconds": duration,
|
| 137 |
+
"total_frames": total_frames,
|
| 138 |
+
"frames_processed": len(keyframes),
|
| 139 |
+
"audio_segments_processed": len(audio_segments),
|
| 140 |
+
},
|
| 141 |
+
}
|
vision_tools.py
ADDED
|
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# vision_tools.py
|
| 2 |
+
# -----------------------------------------------------------------------------
|
| 3 |
+
# Veureu — VISION utilities (self-contained)
|
| 4 |
+
# - Image processing and analysis
|
| 5 |
+
# - Object detection and recognition
|
| 6 |
+
# - Face detection and recognition
|
| 7 |
+
# - Scene description
|
| 8 |
+
# - Montage sequence analysis
|
| 9 |
+
# -----------------------------------------------------------------------------
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 15 |
+
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 19 |
+
|
| 20 |
+
import json
|
| 21 |
+
import logging
|
| 22 |
+
import math
|
| 23 |
+
import os
|
| 24 |
+
import shlex
|
| 25 |
+
import subprocess
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
import torchaudio
|
| 30 |
+
import torchaudio.transforms as T
|
| 31 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 32 |
+
from pyannote.audio import Pipeline as PyannotePipeline
|
| 33 |
+
from speechbrain.pretrained import SpeakerRecognition
|
| 34 |
+
from pydub import AudioSegment
|
| 35 |
+
from sklearn.cluster import KMeans
|
| 36 |
+
from sklearn.metrics import silhouette_score
|
| 37 |
+
from scenedetect import VideoManager, SceneManager
|
| 38 |
+
from scenedetect.detectors import ContentDetector
|
| 39 |
+
|
| 40 |
+
import os, base64, requests, subprocess, contextlib, time
|
| 41 |
+
|
| 42 |
+
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
| 43 |
+
from PIL import Image
|
| 44 |
+
|
| 45 |
+
from libs.audio_tools_ana_2 import process_audio_for_video
|
| 46 |
+
|
| 47 |
+
import cv2
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
import face_recognition # type: ignore
|
| 51 |
+
except Exception:
|
| 52 |
+
face_recognition = None # type: ignore
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
# Utility wrapper for DeepFace
|
| 56 |
+
from libs.face_utils import FaceRecognizer as DFRecognizer
|
| 57 |
+
except Exception:
|
| 58 |
+
try:
|
| 59 |
+
from face_utils import FaceRecognizer as DFRecognizer
|
| 60 |
+
except Exception:
|
| 61 |
+
DFRecognizer = None # type: ignore
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
from deepface import DeepFace
|
| 65 |
+
except ImportError:
|
| 66 |
+
DeepFace = None
|
| 67 |
+
|
| 68 |
+
import easyocr
|
| 69 |
+
|
| 70 |
+
# -------------------------------- Logging ------------------------------------
|
| 71 |
+
log = logging.getLogger("audio_tools")
|
| 72 |
+
if not log.handlers:
|
| 73 |
+
h = logging.StreamHandler()
|
| 74 |
+
h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
|
| 75 |
+
log.addHandler(h)
|
| 76 |
+
log.setLevel(logging.INFO)
|
| 77 |
+
|
| 78 |
+
# ============================ UTILS ===========================================
|
| 79 |
+
def load_config(path: str = "configs/config_veureu.yaml") -> Dict[str, Any]:
|
| 80 |
+
p = Path(path)
|
| 81 |
+
if not p.exists():
|
| 82 |
+
log.warning("Config file not found: %s (using defaults)", path)
|
| 83 |
+
return {}
|
| 84 |
+
try:
|
| 85 |
+
import yaml
|
| 86 |
+
cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
|
| 87 |
+
cfg["__path__"] = str(p)
|
| 88 |
+
return cfg
|
| 89 |
+
except Exception as e:
|
| 90 |
+
log.error("Failed to read YAML config: %s", e)
|
| 91 |
+
return {}
|
| 92 |
+
|
| 93 |
+
# ---------------------------- IMAGE EMBEDDING ----------------------------------
|
| 94 |
+
class FaceOfImageEmbedding:
|
| 95 |
+
"""Preferred backend: `face_recognition`; fallback: DeepFace via libs.face_utils."""
|
| 96 |
+
def __init__(self, deepface_model: str = 'Facenet512'):
|
| 97 |
+
self.use_fr = face_recognition is not None
|
| 98 |
+
self.df = None
|
| 99 |
+
if not self.use_fr and DFRecognizer is not None:
|
| 100 |
+
try:
|
| 101 |
+
self.df = DFRecognizer(model_name=deepface_model)
|
| 102 |
+
log.info("Using DeepFace (%s) as face embedding backend.", deepface_model)
|
| 103 |
+
except Exception as e:
|
| 104 |
+
log.warning("Failed to initialize DeepFace: %s", e)
|
| 105 |
+
elif self.use_fr:
|
| 106 |
+
log.info("Using face_recognition as face embedding backend.")
|
| 107 |
+
else:
|
| 108 |
+
log.error("No face embedding backend available.")
|
| 109 |
+
|
| 110 |
+
def encode_image(self, image_path: Path) -> Optional[List[float]]:
|
| 111 |
+
import numpy as np
|
| 112 |
+
try:
|
| 113 |
+
if self.use_fr:
|
| 114 |
+
img = face_recognition.load_image_file(str(image_path)) # type: ignore
|
| 115 |
+
encs = face_recognition.face_encodings(img)
|
| 116 |
+
if encs:
|
| 117 |
+
# Normalizar cada embedding a norma 1
|
| 118 |
+
embeddings = [(e / np.linalg.norm(e)).astype(float).tolist() for e in encs]
|
| 119 |
+
return embeddings
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
if self.df is not None:
|
| 123 |
+
emb = self.df.get_face_embedding_from_path(str(image_path))
|
| 124 |
+
if emb is None:
|
| 125 |
+
return None
|
| 126 |
+
# Convertir a numpy array y normalizar
|
| 127 |
+
emb = np.array(emb, dtype=float)
|
| 128 |
+
emb = emb / np.linalg.norm(emb)
|
| 129 |
+
return emb.tolist()
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
log.debug("Fallo embedding cara %s: %s", image_path, e)
|
| 133 |
+
|
| 134 |
+
return None
|
| 135 |
+
|
| 136 |
+
class FaceAnalyzer:
|
| 137 |
+
"""Wrapper sencillo para DeepFace que obtiene edad y género de una imagen."""
|
| 138 |
+
def __init__(self, actions=None):
|
| 139 |
+
if actions is None:
|
| 140 |
+
actions = ["age", "gender"]
|
| 141 |
+
self.actions = actions
|
| 142 |
+
|
| 143 |
+
def analyze_image(self, img_path: str) -> Optional[Dict[str, Any]]:
|
| 144 |
+
try:
|
| 145 |
+
result = DeepFace.analyze(img_path=img_path, actions=self.actions)
|
| 146 |
+
|
| 147 |
+
# Si DeepFace devuelve una lista (varias caras), tomamos la primera
|
| 148 |
+
if isinstance(result, list) and len(result) > 0:
|
| 149 |
+
result = result[0]
|
| 150 |
+
|
| 151 |
+
# Ahora sí podemos acceder a 'age' y 'dominant_gender'
|
| 152 |
+
return {
|
| 153 |
+
"age": result.get("age", "unknown"),
|
| 154 |
+
"gender": result.get("dominant_gender", "unknown")
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
log.warning("No se pudo analizar la imagen %s: %s", img_path, e)
|
| 159 |
+
return None
|
| 160 |
+
|
| 161 |
+
# ----------------------------------- FUNCTIONS -------------------------------------
|
| 162 |
+
def map_identities_per_second(frames_per_second, intervals):
|
| 163 |
+
for seg in intervals:
|
| 164 |
+
seg_start = seg["start"]
|
| 165 |
+
seg_end = seg["end"]
|
| 166 |
+
|
| 167 |
+
# recolectar identidades de los frames en el rango del segmento
|
| 168 |
+
identities = []
|
| 169 |
+
for f in frames_per_second:
|
| 170 |
+
if seg_start <= f["start"] <= seg_end:
|
| 171 |
+
for face in f.get("faces", []):
|
| 172 |
+
identities.append(face)
|
| 173 |
+
|
| 174 |
+
# contar apariciones
|
| 175 |
+
seg["counts"] = dict(Counter(identities))
|
| 176 |
+
|
| 177 |
+
return intervals
|
| 178 |
+
|
| 179 |
+
def _split_montage(img: np.ndarray, n: int, cfg: Dict[str, Any]) -> List[np.ndarray]:
|
| 180 |
+
vd = cfg.get('vision_describer', {})
|
| 181 |
+
montage_cfg = vd.get('montage', {})
|
| 182 |
+
mode = montage_cfg.get('split_mode', 'horizontal') # 'horizontal'|'vertical'|'grid'
|
| 183 |
+
|
| 184 |
+
h, w = img.shape[:2]
|
| 185 |
+
tiles: List[np.ndarray] = []
|
| 186 |
+
|
| 187 |
+
if mode == 'vertical':
|
| 188 |
+
tile_h = h // n
|
| 189 |
+
for i in range(n):
|
| 190 |
+
y0 = i * tile_h; y1 = h if i == n-1 else (i+1) * tile_h
|
| 191 |
+
tiles.append(img[y0:y1, 0:w])
|
| 192 |
+
return tiles
|
| 193 |
+
|
| 194 |
+
if mode == 'grid':
|
| 195 |
+
rows = int(montage_cfg.get('rows', 1) or 1)
|
| 196 |
+
cols = int(montage_cfg.get('cols', n) or n)
|
| 197 |
+
assert rows * cols >= n, "grid rows*cols must be >= n"
|
| 198 |
+
tile_h = h // rows; tile_w = w // cols
|
| 199 |
+
k = 0
|
| 200 |
+
for r in range(rows):
|
| 201 |
+
for c in range(cols):
|
| 202 |
+
if k >= n: break
|
| 203 |
+
y0, y1 = r*tile_h, h if (r==rows-1) else (r+1)*tile_h
|
| 204 |
+
x0, x1 = c*tile_w, w if (c==cols-1) else (c+1)*tile_w
|
| 205 |
+
tiles.append(img[y0:y1, x0:x1]); k += 1
|
| 206 |
+
return tiles
|
| 207 |
+
|
| 208 |
+
tile_w = w // n
|
| 209 |
+
for i in range(n):
|
| 210 |
+
x0 = i * tile_w; x1 = w if i == n-1 else (i+1) * tile_w
|
| 211 |
+
tiles.append(img[0:h, x0:x1])
|
| 212 |
+
return tiles
|
| 213 |
+
|
| 214 |
+
def generar_montage(frame_paths: List[str], output_dir: str) -> None:
|
| 215 |
+
output_path = Path(output_dir)
|
| 216 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 217 |
+
montage_path = ""
|
| 218 |
+
|
| 219 |
+
if frame_paths:
|
| 220 |
+
imgs = [cv2.imread(kf) for kf in frame_paths if os.path.exists(kf)]
|
| 221 |
+
imgs = [img for img in imgs if img is not None]
|
| 222 |
+
print(f"Se encontraron {len(imgs)} imágenes para el montaje.")
|
| 223 |
+
|
| 224 |
+
if imgs:
|
| 225 |
+
h = max(img.shape[0] for img in imgs) # altura máxima
|
| 226 |
+
imgs_resized = [cv2.resize(img, (int(img.shape[1]*h/img.shape[0]), h)) for img in imgs]
|
| 227 |
+
montage = cv2.hconcat(imgs_resized)
|
| 228 |
+
montage_path = os.path.join(output_dir, "keyframes_montage.jpg")
|
| 229 |
+
print(f"Guardando montaje en: {montage_path}")
|
| 230 |
+
cv2.imwrite(montage_path, montage)
|
| 231 |
+
print("Montaje guardado.")
|
| 232 |
+
else:
|
| 233 |
+
print("No se encontraron imágenes válidas para el montaje.")
|
| 234 |
+
|
| 235 |
+
return montage_path
|
| 236 |
+
|
| 237 |
+
def describe_montage_sequence(
|
| 238 |
+
montage_path: str,
|
| 239 |
+
n: int,
|
| 240 |
+
informacion,
|
| 241 |
+
face_identities,
|
| 242 |
+
*,
|
| 243 |
+
config_path: str = 'configs/config_veureu.yaml'
|
| 244 |
+
) -> Dict[str, Any]:
|
| 245 |
+
"""Describe each sub-image of a montage.
|
| 246 |
+
|
| 247 |
+
Inputs
|
| 248 |
+
------
|
| 249 |
+
montage_path: str
|
| 250 |
+
Path to a composite image made of n sub-ismages placed sequentially.
|
| 251 |
+
n: int
|
| 252 |
+
Number of sub-images to split and describe.
|
| 253 |
+
config_path: str
|
| 254 |
+
Path to YAML with 'vision_describer' configuration (provider and params).
|
| 255 |
+
|
| 256 |
+
Returns
|
| 257 |
+
-------
|
| 258 |
+
list []: with the descripcion of each image
|
| 259 |
+
"""
|
| 260 |
+
|
| 261 |
+
path_model = "BSC-LT/salamandra-7b-vision"
|
| 262 |
+
|
| 263 |
+
processor = AutoProcessor.from_pretrained(path_model)
|
| 264 |
+
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
| 265 |
+
path_model,
|
| 266 |
+
torch_dtype=torch.float16,
|
| 267 |
+
low_cpu_mem_usage=True
|
| 268 |
+
).to("cuda")
|
| 269 |
+
|
| 270 |
+
img = cv2.imread(montage_path, cv2.IMREAD_COLOR)
|
| 271 |
+
if img is None:
|
| 272 |
+
raise RuntimeError(f"No se puede leer la imagen: {montage_path}")
|
| 273 |
+
|
| 274 |
+
cfg = load_config(config_path)
|
| 275 |
+
tiles = _split_montage(img, n, cfg)
|
| 276 |
+
if len(tiles) < n:
|
| 277 |
+
raise RuntimeError(f"Se produjeron {len(tiles)} tiles, se esperaban {n}")
|
| 278 |
+
|
| 279 |
+
# Convertir cada tile a PIL Image
|
| 280 |
+
tile_images = [Image.fromarray(cv2.cvtColor(t, cv2.COLOR_BGR2RGB)) for t in tiles]
|
| 281 |
+
|
| 282 |
+
sys_prompt = (
|
| 283 |
+
"Ets un expert en narrativa visual. "
|
| 284 |
+
"Descriu la imatge de manera molt breu i senzilla, en català, "
|
| 285 |
+
"explicant només l’acció principal que s’hi veu. "
|
| 286 |
+
"Respon amb una sola frase curta (10–20 paraules com a màxim), "
|
| 287 |
+
"sense afegir detalls innecessaris ni descriure l’entorn."
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
all_results = []
|
| 291 |
+
|
| 292 |
+
for i in range(len(tile_images)):
|
| 293 |
+
batch = [tile_images[i]] # lista con un solo tile
|
| 294 |
+
|
| 295 |
+
conversation = [
|
| 296 |
+
{"role": "system", "content": sys_prompt},
|
| 297 |
+
{"role": "user", "content": [
|
| 298 |
+
{"type": "image", "image": batch[0]},
|
| 299 |
+
{"type": "text", "text": (
|
| 300 |
+
f"Descriu la imatge de manera molt breu i senzilla, en català. ")}
|
| 301 |
+
]}
|
| 302 |
+
]
|
| 303 |
+
prompt_batch = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 304 |
+
|
| 305 |
+
inputs = processor(images=batch, text=prompt_batch, return_tensors="pt")
|
| 306 |
+
for k, v in inputs.items():
|
| 307 |
+
if v.dtype.is_floating_point:
|
| 308 |
+
inputs[k] = v.to("cuda", torch.float16)
|
| 309 |
+
else:
|
| 310 |
+
inputs[k] = v.to("cuda")
|
| 311 |
+
|
| 312 |
+
output = model.generate(**inputs, max_new_tokens=1024)
|
| 313 |
+
text = processor.decode(output[0], skip_special_tokens=True)
|
| 314 |
+
lines = text.split("\n")
|
| 315 |
+
|
| 316 |
+
desc = ""
|
| 317 |
+
for i, line in enumerate(lines):
|
| 318 |
+
if line.lower().startswith(" assistant"):
|
| 319 |
+
desc = "\n".join(lines[i+1:]).strip()
|
| 320 |
+
break
|
| 321 |
+
|
| 322 |
+
all_results.append(desc)
|
| 323 |
+
torch.cuda.empty_cache()
|
| 324 |
+
|
| 325 |
+
return all_results
|
| 326 |
+
|
| 327 |
+
# --------------------------- IMAGES EXTRACTION -----------------------------
|
| 328 |
+
def keyframe_conditional_extraction_ana(
|
| 329 |
+
video_path,
|
| 330 |
+
output_dir,
|
| 331 |
+
threshold=30.0,
|
| 332 |
+
offset_frames=10
|
| 333 |
+
):
|
| 334 |
+
"""
|
| 335 |
+
Detecta cambios de escena en un vídeo, guarda un fotograma por cada cambio,
|
| 336 |
+
devuelve intervalos con start y end basados en los tiempos de los keyframes
|
| 337 |
+
y genera un montaje con todos los keyframes.
|
| 338 |
+
"""
|
| 339 |
+
if not os.path.exists(output_dir):
|
| 340 |
+
os.makedirs(output_dir)
|
| 341 |
+
|
| 342 |
+
video_manager = VideoManager([video_path])
|
| 343 |
+
scene_manager = SceneManager()
|
| 344 |
+
scene_manager.add_detector(ContentDetector(threshold=threshold))
|
| 345 |
+
|
| 346 |
+
video_manager.start()
|
| 347 |
+
scene_manager.detect_scenes(video_manager)
|
| 348 |
+
|
| 349 |
+
scene_list = scene_manager.get_scene_list()
|
| 350 |
+
|
| 351 |
+
cap = cv2.VideoCapture(video_path)
|
| 352 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 353 |
+
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
|
| 354 |
+
video_duration = total_frames / fps
|
| 355 |
+
|
| 356 |
+
keyframes = []
|
| 357 |
+
for i, (start_time, end_time) in enumerate(scene_list):
|
| 358 |
+
frame_number = int(start_time.get_frames()) + offset_frames
|
| 359 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
| 360 |
+
ret, frame = cap.read()
|
| 361 |
+
if ret:
|
| 362 |
+
ts = frame_number / fps
|
| 363 |
+
frame_path = os.path.join(output_dir, f"scene_{i+1:03d}.jpg")
|
| 364 |
+
cv2.imwrite(frame_path, frame)
|
| 365 |
+
keyframes.append({
|
| 366 |
+
"index": i+1,
|
| 367 |
+
"time": round(ts, 2),
|
| 368 |
+
"path": frame_path
|
| 369 |
+
})
|
| 370 |
+
|
| 371 |
+
cap.release()
|
| 372 |
+
video_manager.release()
|
| 373 |
+
|
| 374 |
+
# Construimos intervalos con start y end
|
| 375 |
+
intervals = []
|
| 376 |
+
for i, kf in enumerate(keyframes):
|
| 377 |
+
start = kf["time"]
|
| 378 |
+
if i < len(keyframes) - 1:
|
| 379 |
+
end = keyframes[i+1]["time"]
|
| 380 |
+
else:
|
| 381 |
+
end = video_duration # última escena hasta el final
|
| 382 |
+
intervals.append({
|
| 383 |
+
"index": kf["index"],
|
| 384 |
+
"start": start,
|
| 385 |
+
"end": round(end, 2),
|
| 386 |
+
"path": kf["path"]
|
| 387 |
+
})
|
| 388 |
+
|
| 389 |
+
return intervals
|
| 390 |
+
|
| 391 |
+
def keyframe_every_second(
|
| 392 |
+
video_path: str,
|
| 393 |
+
output_dir: str = ".",
|
| 394 |
+
max_frames: Optional[int] = 10000,
|
| 395 |
+
) -> List[dict]:
|
| 396 |
+
"""
|
| 397 |
+
Extrae un fotograma por cada segundo del video.
|
| 398 |
+
|
| 399 |
+
Returns:
|
| 400 |
+
List[dict]: Cada elemento es {"index", "start", "end", "path"}
|
| 401 |
+
"""
|
| 402 |
+
out_dir = Path(output_dir)
|
| 403 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 404 |
+
|
| 405 |
+
cap = cv2.VideoCapture(str(video_path))
|
| 406 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
|
| 407 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 408 |
+
duration = total_frames / fps
|
| 409 |
+
|
| 410 |
+
frames: List[dict] = []
|
| 411 |
+
idx = 0
|
| 412 |
+
sec = 0.0
|
| 413 |
+
|
| 414 |
+
while sec <= duration:
|
| 415 |
+
frame_number = int(sec * fps)
|
| 416 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
| 417 |
+
ret, frame = cap.read()
|
| 418 |
+
if not ret:
|
| 419 |
+
break
|
| 420 |
+
|
| 421 |
+
timestamp = frame_number / fps
|
| 422 |
+
frame_path = out_dir / f"frame_per_second{idx:03d}.jpg"
|
| 423 |
+
cv2.imwrite(str(frame_path), frame)
|
| 424 |
+
|
| 425 |
+
frames.append({
|
| 426 |
+
"index": idx + 1,
|
| 427 |
+
"start": round(timestamp, 2),
|
| 428 |
+
"end": None, # lo completamos después
|
| 429 |
+
"path": str(frame_path),
|
| 430 |
+
})
|
| 431 |
+
|
| 432 |
+
idx += 1
|
| 433 |
+
sec += 1.0
|
| 434 |
+
|
| 435 |
+
if max_frames and idx >= max_frames:
|
| 436 |
+
break
|
| 437 |
+
|
| 438 |
+
cap.release()
|
| 439 |
+
|
| 440 |
+
# Completar los "end" con el inicio del siguiente frame
|
| 441 |
+
for i in range(len(frames)):
|
| 442 |
+
if i < len(frames) - 1:
|
| 443 |
+
frames[i]["end"] = frames[i+1]["start"]
|
| 444 |
+
else:
|
| 445 |
+
frames[i]["end"] = round(duration, 2)
|
| 446 |
+
|
| 447 |
+
return frames
|
| 448 |
+
|
| 449 |
+
from collections import Counter, defaultdict
|
| 450 |
+
|
| 451 |
+
# --------------------------- FRAMES PROCESSING -----------------------------
|
| 452 |
+
def process_frames(
|
| 453 |
+
frames: List[dict], # cada elemento es {"index", "start", "end", "path"}
|
| 454 |
+
config: dict,
|
| 455 |
+
face_col=None,
|
| 456 |
+
embedding_model=None,
|
| 457 |
+
) -> Tuple[List[dict], List[int]]:
|
| 458 |
+
"""
|
| 459 |
+
Procesa keyframes:
|
| 460 |
+
- Detecta caras
|
| 461 |
+
- Genera embeddings con FaceEmbedding
|
| 462 |
+
- Opcionalmente compara con face_col (KNN top-3)
|
| 463 |
+
- Opcionalmente ejecuta OCR
|
| 464 |
+
"""
|
| 465 |
+
|
| 466 |
+
frame_results = []
|
| 467 |
+
|
| 468 |
+
# Crear embedding_model si no se pasa
|
| 469 |
+
if embedding_model is None:
|
| 470 |
+
from libs.vision_tools import FaceOfImageEmbedding
|
| 471 |
+
embedding_model = FaceOfImageEmbedding()
|
| 472 |
+
|
| 473 |
+
for idx, frame in enumerate(frames):
|
| 474 |
+
frame_path = frame["path"]
|
| 475 |
+
|
| 476 |
+
try:
|
| 477 |
+
raw_faces = embedding_model.encode_image(Path(frame_path))
|
| 478 |
+
except Exception as e:
|
| 479 |
+
print(f"Error procesando {frame_path}: {e}")
|
| 480 |
+
raw_faces = None
|
| 481 |
+
|
| 482 |
+
faces = []
|
| 483 |
+
if raw_faces is not None:
|
| 484 |
+
if isinstance(raw_faces[0], list): # múltiples
|
| 485 |
+
for e in raw_faces:
|
| 486 |
+
faces.append({"embedding": e})
|
| 487 |
+
else: # uno solo
|
| 488 |
+
faces.append({"embedding": raw_faces})
|
| 489 |
+
|
| 490 |
+
faces_detected = []
|
| 491 |
+
for f in faces:
|
| 492 |
+
embedding = f.get("embedding")
|
| 493 |
+
identity = "Unknown"
|
| 494 |
+
knn = []
|
| 495 |
+
|
| 496 |
+
if face_col is not None and embedding is not None:
|
| 497 |
+
try:
|
| 498 |
+
num_embeddings = face_col.count()
|
| 499 |
+
if num_embeddings < 1:
|
| 500 |
+
knn = []
|
| 501 |
+
identity = "Unknown"
|
| 502 |
+
|
| 503 |
+
else:
|
| 504 |
+
n_results = min(3, num_embeddings)
|
| 505 |
+
q = face_col.query(
|
| 506 |
+
query_embeddings=[embedding],
|
| 507 |
+
n_results=n_results,
|
| 508 |
+
include=["metadatas", "distances"]
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
knn = []
|
| 512 |
+
metas = q.get("metadatas", [[]])[0]
|
| 513 |
+
dists = q.get("distances", [[]])[0]
|
| 514 |
+
for meta, dist in zip(metas, dists):
|
| 515 |
+
person_id = meta.get("identity", "Unknown") if isinstance(meta, dict) else "Unknown"
|
| 516 |
+
knn.append({"identity": person_id, "distance": float(dist)})
|
| 517 |
+
|
| 518 |
+
if knn and knn[0]["distance"] < 0.6:
|
| 519 |
+
identity = knn[0]["identity"]
|
| 520 |
+
else:
|
| 521 |
+
identity = "Unknown"
|
| 522 |
+
|
| 523 |
+
except Exception as e:
|
| 524 |
+
print(f"Face KNN failed: {e}")
|
| 525 |
+
knn = []
|
| 526 |
+
identity = "Unknown"
|
| 527 |
+
|
| 528 |
+
faces_detected.append(identity)
|
| 529 |
+
|
| 530 |
+
use_easyocr = True
|
| 531 |
+
if use_easyocr:
|
| 532 |
+
try:
|
| 533 |
+
reader = easyocr.Reader(['en', 'es'], gpu=True) # Cambiar gpu=False si no hay GPU
|
| 534 |
+
results = reader.readtext(frame_path)
|
| 535 |
+
ocr_text_easyocr = " ".join([text for _, text, _ in results]).strip()
|
| 536 |
+
|
| 537 |
+
except Exception as e:
|
| 538 |
+
print(f"OCR error: {e}")
|
| 539 |
+
|
| 540 |
+
frame_results.append({
|
| 541 |
+
"id": frame["index"],
|
| 542 |
+
"start": frame["start"],
|
| 543 |
+
"end": frame["end"],
|
| 544 |
+
"image_path": frame_path,
|
| 545 |
+
"faces": faces_detected,
|
| 546 |
+
"ocr": ocr_text_easyocr,
|
| 547 |
+
})
|
| 548 |
+
|
| 549 |
+
return frame_results
|
| 550 |
+
|
| 551 |
+
if __name__ == "__main__":
|
| 552 |
+
import argparse
|
| 553 |
+
ap = argparse.ArgumentParser(description="Veureu — Audio tools (self-contained)")
|
| 554 |
+
ap.add_argument("--video", required=True)
|
| 555 |
+
ap.add_argument("--out", default="results")
|
| 556 |
+
ap.add_argument("--config", default="configs/config_veureu.yaml")
|
| 557 |
+
args = ap.parse_args()
|
| 558 |
+
|
| 559 |
+
# Lightweight config loader (only for sample run)
|
| 560 |
+
import yaml
|
| 561 |
+
cfg = {}
|
| 562 |
+
p = Path(args.config)
|
| 563 |
+
if p.exists():
|
| 564 |
+
cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
|
| 565 |
+
|
| 566 |
+
out_dir = Path(args.out) / Path(args.video).stem
|
| 567 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 568 |
+
|
| 569 |
+
segs, srt = process_audio_for_video(args.video, out_dir, cfg, voice_collection=None)
|
| 570 |
+
print(json.dumps({
|
| 571 |
+
"segments": len(segs),
|
| 572 |
+
"srt": srt
|
| 573 |
+
}, indent=2, ensure_ascii=False))
|