Upload 4 files
Browse files- api.py +41 -4
- audio_tools.py +39 -8
- llm_router.py +35 -4
api.py
CHANGED
|
@@ -13,7 +13,7 @@ from enum import Enum
|
|
| 13 |
import os
|
| 14 |
|
| 15 |
from video_processing import process_video_pipeline
|
| 16 |
-
from audio_tools import process_audio_for_video
|
| 17 |
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
|
| 18 |
from narration_system import NarrationSystem
|
| 19 |
from llm_router import load_yaml, LLMRouter
|
|
@@ -181,8 +181,8 @@ def process_video_job(job_id: str):
|
|
| 181 |
epsilon=epsilon,
|
| 182 |
min_cluster_size=min_cluster_size,
|
| 183 |
video_name=video_name,
|
| 184 |
-
start_offset_sec=5
|
| 185 |
-
extract_every_sec=0.
|
| 186 |
)
|
| 187 |
|
| 188 |
print(f"[{job_id}] DEBUG - result completo: {result}")
|
|
@@ -231,11 +231,47 @@ def process_video_job(job_id: str):
|
|
| 231 |
# Procesamiento de audio: diarizaci贸n, ASR y embeddings de voz
|
| 232 |
try:
|
| 233 |
cfg = load_yaml("config.yaml")
|
| 234 |
-
audio_segments, srt_unmod, full_txt = process_audio_for_video(video_path, base, cfg, voice_collection=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
except Exception as e_audio:
|
| 236 |
import traceback
|
| 237 |
print(f"[{job_id}] WARN - Audio pipeline failed: {e_audio}\n{traceback.format_exc()}")
|
| 238 |
audio_segments, srt_unmod, full_txt = [], None, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
# Clustering de voces (DBSCAN sobre embeddings v谩lidos)
|
| 241 |
from sklearn.cluster import DBSCAN
|
|
@@ -266,6 +302,7 @@ def process_video_job(job_id: str):
|
|
| 266 |
"full_transcription": full_txt,
|
| 267 |
"voice_labels": v_labels,
|
| 268 |
"num_voice_embeddings": len(voice_embeddings),
|
|
|
|
| 269 |
}
|
| 270 |
job["status"] = JobStatus.DONE
|
| 271 |
|
|
|
|
| 13 |
import os
|
| 14 |
|
| 15 |
from video_processing import process_video_pipeline
|
| 16 |
+
from audio_tools import process_audio_for_video, extract_audio_ffmpeg, embed_voice_segments
|
| 17 |
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
|
| 18 |
from narration_system import NarrationSystem
|
| 19 |
from llm_router import load_yaml, LLMRouter
|
|
|
|
| 181 |
epsilon=epsilon,
|
| 182 |
min_cluster_size=min_cluster_size,
|
| 183 |
video_name=video_name,
|
| 184 |
+
start_offset_sec=0.5,
|
| 185 |
+
extract_every_sec=0.25
|
| 186 |
)
|
| 187 |
|
| 188 |
print(f"[{job_id}] DEBUG - result completo: {result}")
|
|
|
|
| 231 |
# Procesamiento de audio: diarizaci贸n, ASR y embeddings de voz
|
| 232 |
try:
|
| 233 |
cfg = load_yaml("config.yaml")
|
| 234 |
+
audio_segments, srt_unmod, full_txt, diar_info, connection_logs = process_audio_for_video(video_path, base, cfg, voice_collection=None)
|
| 235 |
+
# Loggear en consola del engine los eventos de conexi贸n
|
| 236 |
+
try:
|
| 237 |
+
for ev in (connection_logs or []):
|
| 238 |
+
msg = ev.get("message") if isinstance(ev, dict) else None
|
| 239 |
+
if msg:
|
| 240 |
+
print(f"[{job_id}] {msg}")
|
| 241 |
+
except Exception:
|
| 242 |
+
pass
|
| 243 |
except Exception as e_audio:
|
| 244 |
import traceback
|
| 245 |
print(f"[{job_id}] WARN - Audio pipeline failed: {e_audio}\n{traceback.format_exc()}")
|
| 246 |
audio_segments, srt_unmod, full_txt = [], None, ""
|
| 247 |
+
diar_info = {"diarization_ok": False, "error": str(e_audio)}
|
| 248 |
+
connection_logs = []
|
| 249 |
+
|
| 250 |
+
# Fallback: si no hay segmentos de audio, crear uno m铆nimo del audio completo
|
| 251 |
+
if not audio_segments:
|
| 252 |
+
try:
|
| 253 |
+
from pathlib import Path as _P
|
| 254 |
+
from pydub import AudioSegment as _AS
|
| 255 |
+
wav_out = extract_audio_ffmpeg(video_path, base / f"{_P(video_path).stem}.wav", sr=16000)
|
| 256 |
+
audio = _AS.from_wav(wav_out)
|
| 257 |
+
clips_dir = base / "clips"
|
| 258 |
+
clips_dir.mkdir(parents=True, exist_ok=True)
|
| 259 |
+
cp = clips_dir / "segment_000.wav"
|
| 260 |
+
audio.export(cp, format="wav")
|
| 261 |
+
emb_list = embed_voice_segments([str(cp)])
|
| 262 |
+
audio_segments = [{
|
| 263 |
+
"segment": 0,
|
| 264 |
+
"start": 0.0,
|
| 265 |
+
"end": float(len(audio) / 1000.0),
|
| 266 |
+
"speaker": "SPEAKER_00",
|
| 267 |
+
"text": "",
|
| 268 |
+
"voice_embedding": emb_list[0] if emb_list else [],
|
| 269 |
+
"clip_path": str(cp),
|
| 270 |
+
"lang": "ca",
|
| 271 |
+
"lang_prob": 1.0,
|
| 272 |
+
}]
|
| 273 |
+
except Exception as _efb:
|
| 274 |
+
print(f"[{job_id}] WARN - Audio minimal fallback failed: {_efb}")
|
| 275 |
|
| 276 |
# Clustering de voces (DBSCAN sobre embeddings v谩lidos)
|
| 277 |
from sklearn.cluster import DBSCAN
|
|
|
|
| 302 |
"full_transcription": full_txt,
|
| 303 |
"voice_labels": v_labels,
|
| 304 |
"num_voice_embeddings": len(voice_embeddings),
|
| 305 |
+
"diarization_info": diar_info,
|
| 306 |
}
|
| 307 |
job["status"] = JobStatus.DONE
|
| 308 |
|
audio_tools.py
CHANGED
|
@@ -139,21 +139,36 @@ def diarize_audio(
|
|
| 139 |
min_segment_duration: float = 20.0,
|
| 140 |
max_segment_duration: float = 50.0,
|
| 141 |
hf_token_env: str | None = None,
|
| 142 |
-
) -> Tuple[List[str], List[Dict[str, Any]]]:
|
| 143 |
-
"""Diarization with pyannote and clip export with pydub.
|
|
|
|
|
|
|
| 144 |
from pydub import AudioSegment
|
| 145 |
audio = AudioSegment.from_wav(wav_path)
|
| 146 |
duration = len(audio) / 1000.0
|
| 147 |
|
| 148 |
diarization = None
|
|
|
|
|
|
|
| 149 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
pipeline = Pipeline.from_pretrained(
|
| 151 |
"pyannote/speaker-diarization-3.1",
|
| 152 |
-
use_auth_token=
|
| 153 |
)
|
|
|
|
| 154 |
diarization = pipeline(wav_path)
|
|
|
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
log.warning(f"Diarization unavailable, using single full segment fallback: {e}")
|
|
|
|
|
|
|
| 157 |
|
| 158 |
clips_dir = (base_dir / clips_folder)
|
| 159 |
clips_dir.mkdir(parents=True, exist_ok=True)
|
|
@@ -203,11 +218,17 @@ def diarize_audio(
|
|
| 203 |
if not segments:
|
| 204 |
cp = clips_dir / "segment_000.wav"
|
| 205 |
audio.export(cp, format="wav")
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
pairs = sorted(zip(clip_paths, segments), key=lambda x: x[1]["start"])
|
| 209 |
clip_paths, segments = [p[0] for p in pairs], [p[1] for p in pairs]
|
| 210 |
-
return clip_paths, segments
|
| 211 |
|
| 212 |
# ------------------------------ Voice embeddings -----------------------------
|
| 213 |
|
|
@@ -395,7 +416,7 @@ def process_audio_for_video(
|
|
| 395 |
out_dir: Path,
|
| 396 |
cfg: Dict[str, Any],
|
| 397 |
voice_collection=None,
|
| 398 |
-
) -> Tuple[List[Dict[str, Any]], Optional[str], str]:
|
| 399 |
"""
|
| 400 |
Audio pipeline: FFmpeg -> diarization -> remote ASR (full + clips) -> embeddings -> speaker-ID -> SRT.
|
| 401 |
Returns (audio_segments, srt_path or None, full_transcription_text).
|
|
@@ -409,21 +430,31 @@ def process_audio_for_video(
|
|
| 409 |
diar_cfg = audio_cfg.get("diarization", {})
|
| 410 |
min_dur = float(diar_cfg.get("min_segment_duration", 20.0))
|
| 411 |
max_dur = float(diar_cfg.get("max_segment_duration", 50.0))
|
| 412 |
-
clip_paths, diar_segs = diarize_audio(wav_path, out_dir, "clips", min_dur, max_dur)
|
| 413 |
log.info("Clips de audio generados.")
|
| 414 |
|
| 415 |
full_transcription = ""
|
| 416 |
asr_section = cfg.get("asr", {})
|
| 417 |
if asr_section.get("enable_full_transcription", True):
|
| 418 |
log.info("Transcripci贸n completa (remota, Space 'asr')...")
|
|
|
|
|
|
|
|
|
|
| 419 |
full_res = transcribe_audio_remote(wav_path, cfg)
|
|
|
|
|
|
|
| 420 |
full_transcription = full_res.get("text", "") or ""
|
| 421 |
log.info("Transcripci贸n completa finalizada.")
|
| 422 |
|
| 423 |
log.info("Transcripci贸n por clip (remota, Space 'asr')...")
|
| 424 |
trans: List[str] = []
|
| 425 |
for cp in clip_paths:
|
|
|
|
|
|
|
|
|
|
| 426 |
res = transcribe_audio_remote(cp, cfg)
|
|
|
|
|
|
|
| 427 |
trans.append(res.get("text", ""))
|
| 428 |
|
| 429 |
log.info("Se han transcrito todos los clips.")
|
|
@@ -467,4 +498,4 @@ def process_audio_for_video(
|
|
| 467 |
log.warning(f"SRT generation failed: {e}")
|
| 468 |
srt_unmodified_path = None
|
| 469 |
|
| 470 |
-
return audio_segments, srt_unmodified_path, full_transcription
|
|
|
|
| 139 |
min_segment_duration: float = 20.0,
|
| 140 |
max_segment_duration: float = 50.0,
|
| 141 |
hf_token_env: str | None = None,
|
| 142 |
+
) -> Tuple[List[str], List[Dict[str, Any]], Dict[str, Any], List[Dict[str, Any]]]:
|
| 143 |
+
"""Diarization with pyannote and clip export with pydub.
|
| 144 |
+
Returns (clip_paths, segments, info) where info includes diarization_ok and optional error.
|
| 145 |
+
"""
|
| 146 |
from pydub import AudioSegment
|
| 147 |
audio = AudioSegment.from_wav(wav_path)
|
| 148 |
duration = len(audio) / 1000.0
|
| 149 |
|
| 150 |
diarization = None
|
| 151 |
+
connection_logs: List[Dict[str, Any]] = []
|
| 152 |
+
diar_info: Dict[str, Any] = {"diarization_ok": True, "error": "", "token_source": ""}
|
| 153 |
try:
|
| 154 |
+
# Para pyannote usamos exclusivamente PYANNOTE_TOKEN (o un token expl铆cito recibido)
|
| 155 |
+
_env_token = os.getenv("PYANNOTE_TOKEN")
|
| 156 |
+
_token = hf_token_env or _env_token
|
| 157 |
+
diar_info["token_source"] = "hf_token_env" if hf_token_env else ("PYANNOTE_TOKEN" if _env_token else "none")
|
| 158 |
+
import time as _t
|
| 159 |
+
t0 = _t.time()
|
| 160 |
pipeline = Pipeline.from_pretrained(
|
| 161 |
"pyannote/speaker-diarization-3.1",
|
| 162 |
+
use_auth_token=_token
|
| 163 |
)
|
| 164 |
+
connection_logs.append({"service": "pyannote", "phase": "connect", "message": "Connecting to pyannote server..."})
|
| 165 |
diarization = pipeline(wav_path)
|
| 166 |
+
dt = _t.time() - t0
|
| 167 |
+
connection_logs.append({"service": "pyannote", "phase": "done", "message": f"Response from pyannote received in {dt:.2f} s"})
|
| 168 |
except Exception as e:
|
| 169 |
log.warning(f"Diarization unavailable, using single full segment fallback: {e}")
|
| 170 |
+
diar_info.update({"diarization_ok": False, "error": str(e)})
|
| 171 |
+
connection_logs.append({"service": "pyannote", "phase": "error", "message": f"pyannote error: {str(e)}"})
|
| 172 |
|
| 173 |
clips_dir = (base_dir / clips_folder)
|
| 174 |
clips_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
| 218 |
if not segments:
|
| 219 |
cp = clips_dir / "segment_000.wav"
|
| 220 |
audio.export(cp, format="wav")
|
| 221 |
+
# No error here necessarily; could be due to post-filtering thresholds.
|
| 222 |
+
if diar_info.get("error"):
|
| 223 |
+
# already marked
|
| 224 |
+
pass
|
| 225 |
+
else:
|
| 226 |
+
diar_info["reason"] = "no_segments_after_filter"
|
| 227 |
+
return [str(cp)], [{"start": 0.0, "end": duration, "speaker": "SPEAKER_00"}], diar_info, connection_logs
|
| 228 |
|
| 229 |
pairs = sorted(zip(clip_paths, segments), key=lambda x: x[1]["start"])
|
| 230 |
clip_paths, segments = [p[0] for p in pairs], [p[1] for p in pairs]
|
| 231 |
+
return clip_paths, segments, diar_info, connection_logs
|
| 232 |
|
| 233 |
# ------------------------------ Voice embeddings -----------------------------
|
| 234 |
|
|
|
|
| 416 |
out_dir: Path,
|
| 417 |
cfg: Dict[str, Any],
|
| 418 |
voice_collection=None,
|
| 419 |
+
) -> Tuple[List[Dict[str, Any]], Optional[str], str, Dict[str, Any], List[Dict[str, Any]]]:
|
| 420 |
"""
|
| 421 |
Audio pipeline: FFmpeg -> diarization -> remote ASR (full + clips) -> embeddings -> speaker-ID -> SRT.
|
| 422 |
Returns (audio_segments, srt_path or None, full_transcription_text).
|
|
|
|
| 430 |
diar_cfg = audio_cfg.get("diarization", {})
|
| 431 |
min_dur = float(diar_cfg.get("min_segment_duration", 20.0))
|
| 432 |
max_dur = float(diar_cfg.get("max_segment_duration", 50.0))
|
| 433 |
+
clip_paths, diar_segs, diar_info, connection_logs = diarize_audio(wav_path, out_dir, "clips", min_dur, max_dur)
|
| 434 |
log.info("Clips de audio generados.")
|
| 435 |
|
| 436 |
full_transcription = ""
|
| 437 |
asr_section = cfg.get("asr", {})
|
| 438 |
if asr_section.get("enable_full_transcription", True):
|
| 439 |
log.info("Transcripci贸n completa (remota, Space 'asr')...")
|
| 440 |
+
import time as _t
|
| 441 |
+
t0 = _t.time()
|
| 442 |
+
connection_logs.append({"service": "asr", "phase": "connect", "message": "Connecting to ASR space..."})
|
| 443 |
full_res = transcribe_audio_remote(wav_path, cfg)
|
| 444 |
+
dt = _t.time() - t0
|
| 445 |
+
connection_logs.append({"service": "asr", "phase": "done", "message": f"Response from ASR space received in {dt:.2f} s"})
|
| 446 |
full_transcription = full_res.get("text", "") or ""
|
| 447 |
log.info("Transcripci贸n completa finalizada.")
|
| 448 |
|
| 449 |
log.info("Transcripci贸n por clip (remota, Space 'asr')...")
|
| 450 |
trans: List[str] = []
|
| 451 |
for cp in clip_paths:
|
| 452 |
+
import time as _t
|
| 453 |
+
t0 = _t.time()
|
| 454 |
+
connection_logs.append({"service": "asr", "phase": "connect", "message": "Transcribing clip via ASR space..."})
|
| 455 |
res = transcribe_audio_remote(cp, cfg)
|
| 456 |
+
dt = _t.time() - t0
|
| 457 |
+
connection_logs.append({"service": "asr", "phase": "done", "message": f"Clip transcribed in {dt:.2f} s"})
|
| 458 |
trans.append(res.get("text", ""))
|
| 459 |
|
| 460 |
log.info("Se han transcrito todos los clips.")
|
|
|
|
| 498 |
log.warning(f"SRT generation failed: {e}")
|
| 499 |
srt_unmodified_path = None
|
| 500 |
|
| 501 |
+
return audio_segments, srt_unmodified_path, full_transcription, diar_info, connection_logs
|
llm_router.py
CHANGED
|
@@ -6,6 +6,7 @@ import os
|
|
| 6 |
import yaml
|
| 7 |
|
| 8 |
from remote_clients import InstructClient, VisionClient, ToolsClient, ASRClient
|
|
|
|
| 9 |
|
| 10 |
def load_yaml(path: str) -> Dict[str, Any]:
|
| 11 |
p = Path(path)
|
|
@@ -36,26 +37,56 @@ class LLMRouter:
|
|
| 36 |
"whisper-catalan": mk("whisper-catalan", ASRClient),
|
| 37 |
}
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# ---- INSTRUCT ----
|
| 40 |
def instruct(self, prompt: str, system: Optional[str] = None, model: str = "salamandra-instruct", **kwargs) -> str:
|
| 41 |
if model in self.rem:
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 44 |
|
| 45 |
# ---- VISION ----
|
| 46 |
def vision_describe(self, image_paths: List[str], context: Optional[Dict[str, Any]] = None, model: str = "salamandra-vision", **kwargs) -> List[str]:
|
| 47 |
if model in self.rem:
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 50 |
|
| 51 |
# ---- TOOLS ----
|
| 52 |
def chat_with_tools(self, messages: List[Dict[str, str]], tools: Optional[List[Dict[str, Any]]] = None, model: str = "salamandra-tools", **kwargs) -> Dict[str, Any]:
|
| 53 |
if model in self.rem:
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 56 |
|
| 57 |
# ---- ASR ----
|
| 58 |
def asr_transcribe(self, audio_path: str, model: str = "whisper-catalan", **kwargs) -> Dict[str, Any]:
|
| 59 |
if model in self.rem:
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
|
|
|
| 6 |
import yaml
|
| 7 |
|
| 8 |
from remote_clients import InstructClient, VisionClient, ToolsClient, ASRClient
|
| 9 |
+
import time
|
| 10 |
|
| 11 |
def load_yaml(path: str) -> Dict[str, Any]:
|
| 12 |
p = Path(path)
|
|
|
|
| 37 |
"whisper-catalan": mk("whisper-catalan", ASRClient),
|
| 38 |
}
|
| 39 |
|
| 40 |
+
self.service_names = {
|
| 41 |
+
"salamandra-instruct": "schat",
|
| 42 |
+
"salamandra-vision": "svision",
|
| 43 |
+
"salamandra-tools": "stools",
|
| 44 |
+
"whisper-catalan": "asr",
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
def _log_connect(self, model_key: str, phase: str, elapsed: float | None = None):
|
| 48 |
+
svc = self.service_names.get(model_key, model_key)
|
| 49 |
+
if phase == "connect":
|
| 50 |
+
print(f"[LLMRouter] Connecting to {svc} space...")
|
| 51 |
+
elif phase == "done":
|
| 52 |
+
print(f"[LLMRouter] Response from {svc} space received in {elapsed:.2f} s")
|
| 53 |
+
|
| 54 |
# ---- INSTRUCT ----
|
| 55 |
def instruct(self, prompt: str, system: Optional[str] = None, model: str = "salamandra-instruct", **kwargs) -> str:
|
| 56 |
if model in self.rem:
|
| 57 |
+
self._log_connect(model, "connect")
|
| 58 |
+
t0 = time.time()
|
| 59 |
+
out = self.clients[model].generate(prompt, system=system, **kwargs) # type: ignore
|
| 60 |
+
self._log_connect(model, "done", time.time() - t0)
|
| 61 |
+
return out
|
| 62 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 63 |
|
| 64 |
# ---- VISION ----
|
| 65 |
def vision_describe(self, image_paths: List[str], context: Optional[Dict[str, Any]] = None, model: str = "salamandra-vision", **kwargs) -> List[str]:
|
| 66 |
if model in self.rem:
|
| 67 |
+
self._log_connect(model, "connect")
|
| 68 |
+
t0 = time.time()
|
| 69 |
+
out = self.clients[model].describe(image_paths, context=context, **kwargs) # type: ignore
|
| 70 |
+
self._log_connect(model, "done", time.time() - t0)
|
| 71 |
+
return out
|
| 72 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 73 |
|
| 74 |
# ---- TOOLS ----
|
| 75 |
def chat_with_tools(self, messages: List[Dict[str, str]], tools: Optional[List[Dict[str, Any]]] = None, model: str = "salamandra-tools", **kwargs) -> Dict[str, Any]:
|
| 76 |
if model in self.rem:
|
| 77 |
+
self._log_connect(model, "connect")
|
| 78 |
+
t0 = time.time()
|
| 79 |
+
out = self.clients[model].chat(messages, tools=tools, **kwargs) # type: ignore
|
| 80 |
+
self._log_connect(model, "done", time.time() - t0)
|
| 81 |
+
return out
|
| 82 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|
| 83 |
|
| 84 |
# ---- ASR ----
|
| 85 |
def asr_transcribe(self, audio_path: str, model: str = "whisper-catalan", **kwargs) -> Dict[str, Any]:
|
| 86 |
if model in self.rem:
|
| 87 |
+
self._log_connect(model, "connect")
|
| 88 |
+
t0 = time.time()
|
| 89 |
+
out = self.clients[model].transcribe(audio_path, **kwargs) # type: ignore
|
| 90 |
+
self._log_connect(model, "done", time.time() - t0)
|
| 91 |
+
return out
|
| 92 |
raise RuntimeError(f"Modelo local no implementado para: {model}")
|