# audio_tools.py (ASR delegated to remote HF Space "veureu/asr") # ----------------------------------------------------------------------------- # Veureu — AUDIO utilities (orchestrator w/ remote ASR) # - FFmpeg extraction (WAV) # - Diarization (pyannote or silence-based fallback) [local] # - Voice embeddings (SpeechBrain ECAPA) [local] # - Speaker identification (KMeans + ChromaDB optional) [local] # - ASR: delegated to HF Space `veureu/asr` (faster-whisper-large-v3-ca-3catparla) # - SRT generation # - Orchestrator: process_audio_for_video(...) # ----------------------------------------------------------------------------- from __future__ import annotations import json import logging import math import os import shlex import subprocess from pathlib import Path from typing import List, Dict, Any, Tuple, Optional import numpy as np # Optional torchaudio for I/O and resampling (fallback to soundfile+librosa otherwise) try: import torch import torchaudio as ta import torchaudio.transforms as T HAS_TORCHAUDIO = True # Note: ta.set_audio_backend is deprecated in newer torchaudio versions except Exception: HAS_TORCHAUDIO = False ta = None # type: ignore import soundfile as sf # Pyannote for diarization (local) - optional try: from pyannote.audio import Pipeline HAS_PYANNOTE = True except Exception: Pipeline = None # type: ignore HAS_PYANNOTE = False # Speaker embeddings (local) from speechbrain.inference.speaker import SpeakerRecognition # v1.0+ # Clustering from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score # Router to remote Spaces (asr) from llm_router import load_yaml, LLMRouter # -------------------------------- Logging ------------------------------------ log = logging.getLogger("audio_tools") if not log.handlers: _h = logging.StreamHandler() _h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s")) log.addHandler(_h) log.setLevel(logging.INFO) # ------------------------------- Utilities ----------------------------------- def load_wav(path: str | Path, sr: int = 16000): """Load audio as mono float32 at the requested sample rate.""" if HAS_TORCHAUDIO: wav, in_sr = ta.load(str(path)) if in_sr != sr: wav = ta.functional.resample(wav, in_sr, sr) if wav.dim() > 1: wav = wav.mean(dim=0, keepdim=True) return wav.squeeze(0).numpy(), sr import librosa y, in_sr = sf.read(str(path), dtype="float32", always_2d=False) if y.ndim > 1: y = y.mean(axis=1) if in_sr != sr: y = librosa.resample(y, orig_sr=in_sr, target_sr=sr) return y.astype(np.float32), sr def save_wav(path: str | Path, y, sr: int = 16000): """Save mono float32 wav.""" if HAS_TORCHAUDIO: import torch wav = torch.from_numpy(np.asarray(y, dtype=np.float32)).unsqueeze(0) ta.save(str(path), wav, sr) else: sf.write(str(path), np.asarray(y, dtype=np.float32), sr) def extract_audio_ffmpeg( video_path: str, audio_out: Path, sr: int = 16000, mono: bool = True, ) -> str: """Extract audio from video to WAV using ffmpeg.""" audio_out.parent.mkdir(parents=True, exist_ok=True) cmd = f'ffmpeg -y -i "{video_path}" -vn {"-ac 1" if mono else ""} -ar {sr} -f wav "{audio_out}"' subprocess.run( shlex.split(cmd), check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, ) return str(audio_out) # ----------------------------------- ASR (REMOTE) ------------------------------------- def transcribe_audio_remote(audio_path: str | Path, cfg: Dict[str, Any]) -> Dict[str, Any]: """ Send the audio file to the remote ASR Space `veureu/asr` (Gradio or HTTP). The remote model is 'faster-whisper-large-v3-ca-3catparla' (Aina). Returns standardized dict: {'text': str, 'segments': list?} """ if not cfg: cfg = load_yaml("config.yaml") router = LLMRouter(cfg) model_name = (cfg.get("models", {}).get("asr") or "whisper-catalan") params = { "language": "ca", # remote ASR model is configured server-side; avoid 'model' to not clash with router arg "timestamps": True, "diarization": False, # diarization stays local } try: result = router.asr_transcribe(str(audio_path), model=model_name, **params) except Exception as e: try: import httpx if isinstance(e, httpx.ReadTimeout): log.warning(f"ASR timeout for {audio_path}: {e}") return {"text": "", "segments": []} except Exception: pass log.warning(f"ASR error for {audio_path}: {e}") return {"text": "", "segments": []} if isinstance(result, str): return {"text": result, "segments": []} if isinstance(result, dict): if "text" not in result and "transcription" in result: result["text"] = result["transcription"] result.setdefault("segments", []) return result return {"text": str(result), "segments": []} # -------------------------------- Diarization -------------------------------- def diarize_audio_silence_based( wav_path: str, base_dir: Path, clips_folder: str = "clips", min_segment_duration: float = 20.0, max_segment_duration: float = 50.0, silence_thresh: int = -40, min_silence_len: int = 500, ) -> Tuple[List[str], List[Dict[str, Any]], Dict[str, Any], List[Dict[str, Any]]]: """Segmentation based on silence detection (alternative to pyannote). Returns (clip_paths, segments, info, connection_logs) in same format as diarize_audio. """ from pydub import AudioSegment from pydub.silence import detect_nonsilent audio = AudioSegment.from_wav(wav_path) duration = len(audio) / 1000.0 # Detect non-silent chunks nonsilent_ranges = detect_nonsilent( audio, min_silence_len=min_silence_len, silence_thresh=silence_thresh ) clips_dir = (base_dir / clips_folder) clips_dir.mkdir(parents=True, exist_ok=True) clip_paths: List[str] = [] segments: List[Dict[str, Any]] = [] for idx, (start_ms, end_ms) in enumerate(nonsilent_ranges): start = start_ms / 1000.0 end = end_ms / 1000.0 seg_dur = end - start # Filter by minimum duration if seg_dur < min_segment_duration: continue # Split long segments if seg_dur > max_segment_duration: n = int(math.ceil(seg_dur / max_segment_duration)) sub_d = seg_dur / n for j in range(n): s = start + j * sub_d e = min(end, start + (j + 1) * sub_d) if e <= s: continue clip = audio[int(s * 1000):int(e * 1000)] cp = clips_dir / f"segment_{idx:03d}_{j:02d}.wav" clip.export(cp, format="wav") segments.append({"start": s, "end": e, "speaker": "UNKNOWN"}) clip_paths.append(str(cp)) else: clip = audio[start_ms:end_ms] cp = clips_dir / f"segment_{idx:03d}.wav" clip.export(cp, format="wav") segments.append({"start": start, "end": end, "speaker": "UNKNOWN"}) clip_paths.append(str(cp)) # Fallback: if no segments, use full audio if not segments: cp = clips_dir / "segment_000.wav" audio.export(cp, format="wav") return ( [str(cp)], [{"start": 0.0, "end": duration, "speaker": "UNKNOWN"}], {"diarization_ok": False, "error": "no_segments_after_silence_filter", "token_source": "silence-based"}, [{"service": "silence-detection", "phase": "done", "message": "Segmentation by silence completed"}] ) diar_info = { "diarization_ok": True, "error": "", "token_source": "silence-based", "method": "silence-detection", "num_segments": len(segments) } connection_logs = [{ "service": "silence-detection", "phase": "done", "message": f"Segmented audio into {len(segments)} clips based on silence" }] return clip_paths, segments, diar_info, connection_logs def diarize_audio( wav_path: str, base_dir: Path, clips_folder: str = "clips", min_segment_duration: float = 20.0, max_segment_duration: float = 50.0, hf_token_env: str | None = None, use_silence_fallback: bool = True, force_silence_only: bool = False, silence_thresh: int = -40, min_silence_len: int = 500, ) -> Tuple[List[str], List[Dict[str, Any]], Dict[str, Any], List[Dict[str, Any]]]: """Diarization with pyannote (or silence-based fallback) and clip export with pydub. Args: force_silence_only: If True, skip pyannote and use silence-based segmentation directly. use_silence_fallback: If True and pyannote fails, use silence-based segmentation. silence_thresh: dBFS threshold for silence detection (default -40). min_silence_len: Minimum silence length in milliseconds (default 500). Returns (clip_paths, segments, info) where info includes diarization_ok and optional error. """ # If forced to use silence-only or pyannote not available, use silence-based directly if force_silence_only or not HAS_PYANNOTE: if not HAS_PYANNOTE: log.info("pyannote not available, using silence-based segmentation") else: log.info("Using silence-based segmentation (forced)") return diarize_audio_silence_based( wav_path, base_dir, clips_folder, min_segment_duration, max_segment_duration, silence_thresh, min_silence_len ) from pydub import AudioSegment audio = AudioSegment.from_wav(wav_path) duration = len(audio) / 1000.0 diarization = None connection_logs: List[Dict[str, Any]] = [] diar_info: Dict[str, Any] = {"diarization_ok": True, "error": "", "token_source": ""} try: # Para pyannote usamos exclusivamente PYANNOTE_TOKEN (o un token explícito recibido) _env_token = os.getenv("PYANNOTE_TOKEN") _token = hf_token_env or _env_token diar_info["token_source"] = "hf_token_env" if hf_token_env else ("PYANNOTE_TOKEN" if _env_token else "none") import time as _t t0 = _t.time() pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token=_token ) connection_logs.append({"service": "pyannote", "phase": "connect", "message": "Connecting to pyannote server..."}) diarization = pipeline(wav_path) dt = _t.time() - t0 connection_logs.append({"service": "pyannote", "phase": "done", "message": f"Response from pyannote received in {dt:.2f} s"}) except Exception as e: log.warning(f"Diarization unavailable: {e}") diar_info.update({"diarization_ok": False, "error": str(e)}) connection_logs.append({"service": "pyannote", "phase": "error", "message": f"pyannote error: {str(e)}"}) # Try silence-based segmentation as fallback if use_silence_fallback: log.info("Attempting silence-based segmentation as fallback...") return diarize_audio_silence_based( wav_path, base_dir, clips_folder, min_segment_duration, max_segment_duration, silence_thresh, min_silence_len ) clips_dir = (base_dir / clips_folder) clips_dir.mkdir(parents=True, exist_ok=True) clip_paths: List[str] = [] segments: List[Dict[str, Any]] = [] spk_map: Dict[str, int] = {} prev_end = 0.0 if diarization is not None: for i, (turn, _, speaker) in enumerate(diarization.itertracks(yield_label=True)): start, end = max(0.0, float(turn.start)), min(duration, float(turn.end)) if start < prev_end: start = prev_end if end <= start: continue seg_dur = end - start if seg_dur < min_segment_duration: continue if seg_dur > max_segment_duration: n = int(math.ceil(seg_dur / max_segment_duration)) sub_d = seg_dur / n for j in range(n): s = start + j * sub_d e = min(end, start + (j + 1) * sub_d) if e <= s: continue clip = audio[int(s * 1000):int(e * 1000)] cp = clips_dir / f"segment_{i:03d}_{j:02d}.wav" clip.export(cp, format="wav") if speaker not in spk_map: spk_map[speaker] = len(spk_map) segments.append({"start": s, "end": e, "speaker": f"SPEAKER_{spk_map[speaker]:02d}"}) clip_paths.append(str(cp)) prev_end = e else: clip = audio[int(start * 1000):int(end * 1000)] cp = clips_dir / f"segment_{i:03d}.wav" clip.export(cp, format="wav") if speaker not in spk_map: spk_map[speaker] = len(spk_map) segments.append({"start": start, "end": end, "speaker": f"SPEAKER_{spk_map[speaker]:02d}"}) clip_paths.append(str(cp)) prev_end = end if not segments: cp = clips_dir / "segment_000.wav" audio.export(cp, format="wav") # No error here necessarily; could be due to post-filtering thresholds. if diar_info.get("error"): # already marked pass else: diar_info["reason"] = "no_segments_after_filter" return [str(cp)], [{"start": 0.0, "end": duration, "speaker": "SPEAKER_00"}], diar_info, connection_logs pairs = sorted(zip(clip_paths, segments), key=lambda x: x[1]["start"]) clip_paths, segments = [p[0] for p in pairs], [p[1] for p in pairs] return clip_paths, segments, diar_info, connection_logs # ------------------------------ Voice embeddings ----------------------------- class VoiceEmbedder: def __init__(self): self.model = SpeakerRecognition.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir="pretrained_models/spkrec-ecapa-voxceleb", ) self.model.eval() def embed(self, wav_path: str) -> List[float]: # ensure we have a torch handle without creating a local var that shadows outer scope try: import torch as _torch # local alias, avoids scoping issues except Exception: _torch = None # type: ignore if HAS_TORCHAUDIO: waveform, sr = ta.load(wav_path) target_sr = 16000 if sr != target_sr: waveform = T.Resample(orig_freq=sr, new_freq=target_sr)(waveform) if waveform.shape[0] > 1: waveform = waveform.mean(dim=0, keepdim=True) min_samples = int(0.2 * target_sr) if waveform.shape[1] < min_samples: pad = min_samples - waveform.shape[1] if _torch is None: raise RuntimeError("Torch not available for padding") waveform = _torch.cat([waveform, _torch.zeros((1, pad))], dim=1) if _torch is None: raise RuntimeError("Torch not available for inference") with _torch.no_grad(): # type: ignore emb = self.model.encode_batch(waveform).squeeze().cpu().numpy().astype(float) return emb.tolist() else: y, sr = load_wav(wav_path, sr=16000) min_len = int(0.2 * 16000) if len(y) < min_len: y = np.pad(y, (0, min_len - len(y))) if _torch is None: raise RuntimeError("Torch not available for inference") w = _torch.from_numpy(y).unsqueeze(0).unsqueeze(0) with _torch.no_grad(): # type: ignore emb = self.model.encode_batch(w).squeeze().cpu().numpy().astype(float) return emb.tolist() def embed_voice_segments(clip_paths: List[str]) -> List[List[float]]: ve = VoiceEmbedder() out: List[List[float]] = [] for cp in clip_paths: try: out.append(ve.embed(cp)) except Exception as e: log.warning(f"Embedding error in {cp}: {e}") out.append([]) return out # --------------------------- Speaker identification -------------------------- def identify_speakers( embeddings: List[List[float]], voice_collection, cfg: Dict[str, Any], ) -> List[str]: voice_cfg = cfg.get("voice_processing", {}).get("speaker_identification", {}) if not embeddings or sum(1 for e in embeddings if e) < 2: return ["SPEAKER_00" for _ in embeddings] valid = [e for e in embeddings if e and len(e) > 0] if len(valid) < 2: return ["SPEAKER_00" for _ in embeddings] min_clusters = max(1, int(voice_cfg.get("min_speakers", 1))) max_clusters = min(int(voice_cfg.get("max_speakers", 5)), len(valid) - 1) if voice_cfg.get("find_optimal_clusters", True) and len(valid) > 2: best_score, best_k = -1.0, min_clusters for k in range(min_clusters, max_clusters + 1): if k >= len(valid): break km = KMeans(n_clusters=k, random_state=42, n_init="auto") labels = km.fit_predict(valid) if len(set(labels)) > 1: score = silhouette_score(valid, labels) if score > best_score: best_score, best_k = score, k else: best_k = min(max_clusters, max(min_clusters, int(voice_cfg.get("num_speakers", 2)))) best_k = max(1, min(best_k, len(valid) - 1)) km = KMeans(n_clusters=best_k, random_state=42, n_init="auto", init="k-means++") labels = km.fit_predict(np.array(valid)) centers = km.cluster_centers_ cluster_to_name: Dict[int, str] = {} unknown_counter = 0 for cid in range(best_k): center = centers[cid].tolist() name = f"SPEAKER_{cid:02d}" if voice_collection is not None: try: q = voice_collection.query(query_embeddings=[center], n_results=1) metas = q.get("metadatas", [[]])[0] dists = q.get("distances", [[]])[0] thr = voice_cfg.get("distance_threshold") if dists and thr is not None and dists[0] > thr: name = f"UNKNOWN_{unknown_counter}" unknown_counter += 1 voice_collection.add( embeddings=[center], metadatas=[{"name": name}], ids=[f"unk_{cid}_{unknown_counter}"], ) else: if metas and isinstance(metas[0], dict): name = metas[0].get("nombre") or metas[0].get("name") \ or metas[0].get("speaker") or metas[0].get("identity") or name except Exception as e: log.warning(f"Voice KNN query failed: {e}") cluster_to_name[cid] = name personas: List[str] = [] vi = 0 for emb in embeddings: if not emb: personas.append("UNKNOWN") else: label = int(labels[vi]) personas.append(cluster_to_name.get(label, f"SPEAKER_{label:02d}")) vi += 1 return personas # ----------------------------------- SRT ------------------------------------- def _fmt_srt_time(seconds: float) -> str: h = int(seconds // 3600) m = int((seconds % 3600) // 60) s = int(seconds % 60) ms = int(round((seconds - int(seconds)) * 1000)) return f"{h:02}:{m:02}:{s:02},{ms:03}" def generate_srt_from_diarization( diarization_segments: List[Dict[str, Any]], transcriptions: List[str], speakers_per_segment: List[str], output_srt_path: str, cfg: Dict[str, Any], ) -> None: subs = cfg.get("subtitles", {}) max_cpl = int(subs.get("max_chars_per_line", 42)) max_lines = int(subs.get("max_lines_per_cue", 10)) speaker_display = subs.get("speaker_display", "brackets") items: List[Dict[str, Any]] = [] n = min(len(diarization_segments), len(transcriptions), len(speakers_per_segment)) for i in range(n): seg = diarization_segments[i] text = (transcriptions[i] or "").strip() spk = speakers_per_segment[i] items.append({"start": float(seg.get("start", 0.0)), "end": float(seg.get("end", 0.0)), "text": text, "speaker": spk}) out = Path(output_srt_path) out.parent.mkdir(parents=True, exist_ok=True) with out.open("w", encoding="utf-8-sig") as f: for i, it in enumerate(items, 1): text = it["text"] spk = it["speaker"] if speaker_display == "brackets" and spk: text = f"[{spk}]: {text}" elif speaker_display == "prefix" and spk: text = f"{spk}: {text}" words = text.split() lines: List[str] = [] cur = "" for w in words: if len(cur) + len(w) + (1 if cur else 0) <= max_cpl: cur = (cur + " " + w) if cur else w else: lines.append(cur) cur = w if len(lines) >= max_lines - 1: break if cur and len(lines) < max_lines: lines.append(cur) f.write(f"{i}\n{_fmt_srt_time(it['start'])} --> {_fmt_srt_time(it['end'])}\n") f.write("\n".join(lines) + "\n\n") # ------------------------------ Orchestrator --------------------------------- def process_audio_for_video( video_path: str, out_dir: Path, cfg: Dict[str, Any], voice_collection=None, ) -> Tuple[List[Dict[str, Any]], Optional[str], str, Dict[str, Any], List[Dict[str, Any]]]: """ Audio pipeline: FFmpeg -> diarization -> remote ASR (full + clips) -> embeddings -> speaker-ID -> SRT. Returns (audio_segments, srt_path or None, full_transcription_text). """ audio_cfg = cfg.get("audio_processing", {}) sr = int(audio_cfg.get("sample_rate", 16000)) fmt = audio_cfg.get("format", "wav") wav_path = extract_audio_ffmpeg(video_path, out_dir / f"{Path(video_path).stem}.{fmt}", sr=sr) log.info("Audio extraído") diar_cfg = audio_cfg.get("diarization", {}) min_dur = float(diar_cfg.get("min_segment_duration", 0.5)) max_dur = float(diar_cfg.get("max_segment_duration", 10.0)) force_silence = bool(diar_cfg.get("force_silence_only", True)) # Default to silence-based silence_thresh = int(diar_cfg.get("silence_thresh", -40)) min_silence_len = int(diar_cfg.get("min_silence_len", 500)) clip_paths, diar_segs, diar_info, connection_logs = diarize_audio( wav_path, out_dir, "clips", min_dur, max_dur, force_silence_only=force_silence, silence_thresh=silence_thresh, min_silence_len=min_silence_len ) log.info("Clips de audio generados.") full_transcription = "" asr_section = cfg.get("asr", {}) if asr_section.get("enable_full_transcription", True): log.info("Transcripción completa (remota, Space 'asr')...") import time as _t t0 = _t.time() connection_logs.append({"service": "asr", "phase": "connect", "message": "Connecting to ASR space..."}) full_res = transcribe_audio_remote(wav_path, cfg) dt = _t.time() - t0 connection_logs.append({"service": "asr", "phase": "done", "message": f"Response from ASR space received in {dt:.2f} s"}) full_transcription = full_res.get("text", "") or "" log.info("Transcripción completa finalizada.") log.info("Transcripción por clip (remota, Space 'asr')...") trans: List[str] = [] for cp in clip_paths: import time as _t t0 = _t.time() connection_logs.append({"service": "asr", "phase": "connect", "message": "Transcribing clip via ASR space..."}) res = transcribe_audio_remote(cp, cfg) dt = _t.time() - t0 connection_logs.append({"service": "asr", "phase": "done", "message": f"Clip transcribed in {dt:.2f} s"}) trans.append(res.get("text", "")) log.info("Se han transcrito todos los clips.") embeddings = embed_voice_segments(clip_paths) if audio_cfg.get("enable_voice_embeddings", True) else [[] for _ in clip_paths] if cfg.get("voice_processing", {}).get("speaker_identification", {}).get("enabled", True): speakers = identify_speakers(embeddings, voice_collection, cfg) log.info("Speakers identificados correctamente.") else: speakers = [seg.get("speaker", f"SPEAKER_{i:02d}") for i, seg in enumerate(diar_segs)] audio_segments: List[Dict[str, Any]] = [] for i, seg in enumerate(diar_segs): audio_segments.append( { "segment": i, "start": float(seg.get("start", 0.0)), "end": float(seg.get("end", 0.0)), "speaker": speakers[i] if i < len(speakers) else seg.get("speaker", f"SPEAKER_{i:02d}"), "text": trans[i] if i < len(trans) else "", "voice_embedding": embeddings[i], "clip_path": clip_paths[i] if i < len(clip_paths) else str(out_dir / "clips" / f"segment_{i:03d}.wav"), "lang": "ca", "lang_prob": 1.0, } ) srt_base_path = out_dir / f"transcripcion_diarizada_{Path(video_path).stem}" srt_unmodified_path = str(srt_base_path) + "_unmodified.srt" try: generate_srt_from_diarization( diar_segs, [a["text"] for a in audio_segments], [a["speaker"] for a in audio_segments], srt_unmodified_path, cfg, ) except Exception as e: log.warning(f"SRT generation failed: {e}") srt_unmodified_path = None return audio_segments, srt_unmodified_path, full_transcription, diar_info, connection_logs