File size: 5,846 Bytes
41d27d9
 
 
 
16e4638
 
 
 
41d27d9
 
 
 
 
16e4638
41d27d9
16e4638
41d27d9
16e4638
 
 
41d27d9
 
16e4638
 
 
 
 
 
 
41d27d9
16e4638
 
41d27d9
 
16e4638
41d27d9
16e4638
 
 
 
 
 
 
 
 
 
cbb0ac8
41d27d9
16e4638
 
 
 
41d27d9
 
16e4638
41d27d9
16e4638
 
 
 
 
 
 
 
 
 
 
 
 
 
41d27d9
16e4638
 
 
41d27d9
16e4638
41d27d9
4bd8faa
 
 
 
41d27d9
 
 
 
16e4638
 
 
 
 
 
 
 
 
41d27d9
16e4638
 
 
41d27d9
16e4638
773d3e5
f430dce
773d3e5
 
 
 
16e4638
aa47014
 
16e4638
e5e6289
 
 
68f9263
e5e6289
 
 
 
 
 
 
 
 
aa47014
d937c77
 
e5e6289
 
 
 
 
68f9263
e5e6289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e4638
41d27d9
16e4638
 
 
cbb0ac8
41d27d9
 
16e4638
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Optimised NeMo Parakeet-TDT streaming demo for CPU-only Hugging Face Spaces
"""

import os
import threading
import queue
import logging
import numpy as np
import gradio as gr
from scipy import signal
import torch
from nemo.collections.asr.models import ASRModel
from threading import Lock

os.environ["OMP_NUM_THREADS"] = "2"
torch.set_num_threads(2)
torch.backends.quantized.engine = "fbgemm"

logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s", datefmt="%H:%M:%S")
logger = logging.getLogger("asr_app")

SR = 16_000
CHUNK_SECONDS = 4
CHUNK_SAMPLES = SR * CHUNK_SECONDS

asr_lock = Lock()

class SharedModel:
    def __init__(self):
        logger.info("Downloading Parakeet-TDT once …")
        self.model = ASRModel.from_pretrained(
            model_name="nvidia/parakeet-tdt-0.6b-v2",
            map_location="cpu",
        ).eval()
        with torch.inference_mode():
            _ = self.model.transcribe([np.zeros(SR, dtype=np.float32)])

shared_model = SharedModel()

class ASRSession:
    def __init__(self):
        self.audio_q = queue.Queue(maxsize=8)
        self.txt_q = queue.Queue()
        self.transcripts = []
        self.active = True
        threading.Thread(target=self._worker, daemon=True).start()

    def close(self):
        self.active = False
        self.audio_q.put(None)

    def _worker(self):
        buf = np.array([], dtype=np.float32)
        while self.active:
            try:
                while len(buf) < CHUNK_SAMPLES and self.active:
                    audio_chunk = self.audio_q.get()
                    if audio_chunk is None:
                        self.active = False
                        break
                    buf = np.concatenate([buf, audio_chunk])
                if not self.active:
                    break
                while len(buf) >= CHUNK_SAMPLES and self.active:
                    chunk, buf = buf[:CHUNK_SAMPLES], buf[CHUNK_SAMPLES:]
                    with torch.inference_mode():
                        with asr_lock:
                            out = shared_model.model.transcribe([chunk])
                    self.txt_q.put(out[0].text)
            except Exception as e:
                logger.error(f"ASR error: {e}")
        while not self.txt_q.empty():
            self.txt_q.get()

    def preprocess(self, audio):
        sr, y = audio
        if y.ndim > 1:
            y = y.mean(axis=1)
        if sr != SR:
            y = signal.resample_poly(y, SR, sr)
        y = y.astype(np.float32)
        y /= (np.abs(y).max() + 1e-9)
        return y

def stream_fn(audio, state: ASRSession):
    if state.active:
        state.audio_q.put(state.preprocess(audio))
    while not state.txt_q.empty():
        text = state.txt_q.get()
        state.transcripts.append(text)
    return (
        " ".join(state.transcripts) if state.transcripts else "…listening…",
        state,
    )

with gr.Blocks() as demo:
    mic = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
    out = gr.Textbox(label="Transcription")
    session_state = gr.State(lambda: ASRSession())

    gr.Markdown("### HOW TO USE THE APP: Please **refresh or close** the tab when finished so the next person can use it.")
    gr.Video(value="demo0__5-24-2025.mp4", autoplay=False,
        width=384,
        height=216
    )

    gr.Markdown("### The session isolation mechanism is ENABLED and ALLOWS ONLY ONE USER to use the app at a time.")
    
    with gr.Row():
        with gr.Column():
            gr.HTML(
                "<p><strong>Real-time English speech-to-text in your browser — no GPU required.</strong></p>"
                "<p>The app is still in development.</p>"
                "<p>This Space runs the 600&nbsp;M-parameter "
                "<a href=\"https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2\">nvidia/parakeet-tdt-0.6b-v2</a> "
                "model that fits comfortably on the <strong>CPU Basic (2 vCPU)</strong> tier.</p>"
            )
        with gr.Column():
            gr.HTML(
                "<ol>"
                "<li>Click &ldquo;Record&rdquo;</li>"
                "<li><strong>Allow microphone</strong> access and start speaking.</li>"
                "<li>Watch live text appear in the <strong>Transcription</strong> box.</li>"
                "<li>Click &ldquo;Stop&rdquo;</li>"
                "<li><strong>Copy your transcription and close/refresh the tab</strong> allowing next awaiting person to use the app.</li>"
                "</ol>"
            )
    tech_data = [
        ["OMP_NUM_THREADS=2 & torch.set_num_threads(2)", "Matches the 2 vCPUs for optimal throughput"],
        ["FBGEMM backend",                               "Fastest kernels on x86"],
        ["4-second streaming window",                    "Low latency (4 seconds) & small memory footprint"],
    ]
    gr.Dataframe(
        value=tech_data,
        headers=["Technique", "Why it matters"],
        datatype=["text", "text"],
        row_count=(0, "fixed"),
        col_count=(2, "fixed"),
        interactive=False,
    )
    licence_data = [
        ["Demo code (this repo)",                              "Apache-2.0"],
        ["Model weights – nvidia/parakeet-tdt-0.6b-v2",        "CC-BY-4.0 (© NVIDIA)"],
    ]
    gr.Dataframe(
        value=licence_data,
        headers=["Item", "Licence"],
        datatype=["text", "text"],
        row_count=(0, "fixed"),
        col_count=(2, "fixed"),
        interactive=False,
    )
    gr.HTML(
        "<p>If you redistribute transcripts or fine-tuned weights, "
        "please retain the CC-BY-4.0 attribution notice.</p>"
    )

    mic.stream(
        fn=stream_fn,
        inputs=[mic, session_state],
        outputs=[out, session_state],
        stream_every=0.5,
    )

if __name__ == "__main__":
    logger.info("Launching UI")
    demo.launch()