Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,3 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
|
| 3 |
-
This script uses the LangChain Language Model API to answer questions using Retrieval QA
|
| 4 |
-
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
|
| 5 |
-
generate responses.
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
import os
|
| 9 |
import streamlit as st
|
| 10 |
from dotenv import load_dotenv
|
|
@@ -21,21 +14,7 @@ from langchain.llms import HuggingFaceHub
|
|
| 21 |
# set this key as an environment variable
|
| 22 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
| 23 |
|
| 24 |
-
def get_pdf_text(pdf_docs):
|
| 25 |
-
"""
|
| 26 |
-
Extract text from a list of PDF documents.
|
| 27 |
-
|
| 28 |
-
Parameters
|
| 29 |
-
----------
|
| 30 |
-
pdf_docs : list
|
| 31 |
-
List of PDF documents to extract text from.
|
| 32 |
-
|
| 33 |
-
Returns
|
| 34 |
-
-------
|
| 35 |
-
str
|
| 36 |
-
Extracted text from all the PDF documents.
|
| 37 |
-
|
| 38 |
-
"""
|
| 39 |
text = ""
|
| 40 |
for pdf in pdf_docs:
|
| 41 |
pdf_reader = PdfReader(pdf)
|
|
@@ -44,21 +23,7 @@ def get_pdf_text(pdf_docs):
|
|
| 44 |
return text
|
| 45 |
|
| 46 |
|
| 47 |
-
def get_text_chunks(text):
|
| 48 |
-
"""
|
| 49 |
-
Split the input text into chunks.
|
| 50 |
-
|
| 51 |
-
Parameters
|
| 52 |
-
----------
|
| 53 |
-
text : str
|
| 54 |
-
The input text to be split.
|
| 55 |
-
|
| 56 |
-
Returns
|
| 57 |
-
-------
|
| 58 |
-
list
|
| 59 |
-
List of text chunks.
|
| 60 |
-
|
| 61 |
-
"""
|
| 62 |
text_splitter = CharacterTextSplitter(
|
| 63 |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
| 64 |
)
|
|
@@ -66,22 +31,7 @@ def get_text_chunks(text):
|
|
| 66 |
return chunks
|
| 67 |
|
| 68 |
|
| 69 |
-
def get_vectorstore(text_chunks):
|
| 70 |
-
"""
|
| 71 |
-
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
|
| 72 |
-
|
| 73 |
-
Parameters
|
| 74 |
-
----------
|
| 75 |
-
text_chunks : list
|
| 76 |
-
List of text chunks to be embedded.
|
| 77 |
-
|
| 78 |
-
Returns
|
| 79 |
-
-------
|
| 80 |
-
FAISS
|
| 81 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
| 82 |
-
|
| 83 |
-
"""
|
| 84 |
-
#model = "BAAI/bge-base-en-v1.5"
|
| 85 |
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 86 |
encode_kwargs = {
|
| 87 |
"normalize_embeddings": True
|
|
@@ -93,26 +43,13 @@ def get_vectorstore(text_chunks):
|
|
| 93 |
return vectorstore
|
| 94 |
|
| 95 |
|
| 96 |
-
def get_conversation_chain(vectorstore):
|
| 97 |
-
""
|
| 98 |
-
Create a conversational retrieval chain using a vector store and a language model.
|
| 99 |
-
|
| 100 |
-
Parameters
|
| 101 |
-
----------
|
| 102 |
-
vectorstore : FAISS
|
| 103 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
| 104 |
-
|
| 105 |
-
Returns
|
| 106 |
-
-------
|
| 107 |
-
ConversationalRetrievalChain
|
| 108 |
-
A conversational retrieval chain for generating responses.
|
| 109 |
-
|
| 110 |
-
"""
|
| 111 |
llm = HuggingFaceHub(
|
| 112 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
|
| 113 |
model_kwargs={"temperature": 0.5, "max_length": 1048},
|
| 114 |
)
|
| 115 |
-
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
| 116 |
|
| 117 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 118 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
@@ -121,28 +58,18 @@ def get_conversation_chain(vectorstore):
|
|
| 121 |
return conversation_chain
|
| 122 |
|
| 123 |
|
| 124 |
-
def handle_userinput(user_question):
|
| 125 |
-
"""
|
| 126 |
-
Handle user input and generate a response using the conversational retrieval chain.
|
| 127 |
-
Parameters
|
| 128 |
-
----------
|
| 129 |
-
user_question : str
|
| 130 |
-
The user's question.
|
| 131 |
-
"""
|
| 132 |
response = st.session_state.conversation({"question": user_question})
|
| 133 |
st.session_state.chat_history = response["chat_history"]
|
| 134 |
|
| 135 |
for i, message in enumerate(st.session_state.chat_history):
|
| 136 |
if i % 2 == 0:
|
| 137 |
-
st.write("
|
| 138 |
else:
|
| 139 |
st.write("🤖 ChatBot: " + message.content)
|
| 140 |
|
| 141 |
|
| 142 |
def main():
|
| 143 |
-
"""
|
| 144 |
-
Putting it all together.
|
| 145 |
-
"""
|
| 146 |
st.set_page_config(
|
| 147 |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
| 148 |
page_icon=":books:",
|
|
@@ -153,18 +80,19 @@ def main():
|
|
| 153 |
|
| 154 |
st.write(css, unsafe_allow_html=True)
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
if "conversation" not in st.session_state:
|
| 159 |
st.session_state.conversation = None
|
| 160 |
if "chat_history" not in st.session_state:
|
| 161 |
st.session_state.chat_history = None
|
| 162 |
|
|
|
|
| 163 |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
| 164 |
user_question = st.text_input("Ask a question about your documents:")
|
| 165 |
if user_question:
|
| 166 |
handle_userinput(user_question)
|
| 167 |
|
|
|
|
| 168 |
with st.sidebar:
|
| 169 |
st.subheader("Your documents")
|
| 170 |
pdf_docs = st.file_uploader(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
from dotenv import load_dotenv
|
|
|
|
| 14 |
# set this key as an environment variable
|
| 15 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
| 16 |
|
| 17 |
+
def get_pdf_text(pdf_docs : list) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
text = ""
|
| 19 |
for pdf in pdf_docs:
|
| 20 |
pdf_reader = PdfReader(pdf)
|
|
|
|
| 23 |
return text
|
| 24 |
|
| 25 |
|
| 26 |
+
def get_text_chunks(text:str) ->list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
text_splitter = CharacterTextSplitter(
|
| 28 |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
| 29 |
)
|
|
|
|
| 31 |
return chunks
|
| 32 |
|
| 33 |
|
| 34 |
+
def get_vectorstore(text_chunks : list) -> FAISS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 36 |
encode_kwargs = {
|
| 37 |
"normalize_embeddings": True
|
|
|
|
| 43 |
return vectorstore
|
| 44 |
|
| 45 |
|
| 46 |
+
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
|
| 47 |
+
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
llm = HuggingFaceHub(
|
| 49 |
+
#repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 50 |
+
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
| 51 |
model_kwargs={"temperature": 0.5, "max_length": 1048},
|
| 52 |
)
|
|
|
|
| 53 |
|
| 54 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 55 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
|
|
| 58 |
return conversation_chain
|
| 59 |
|
| 60 |
|
| 61 |
+
def handle_userinput(user_question:str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
response = st.session_state.conversation({"question": user_question})
|
| 63 |
st.session_state.chat_history = response["chat_history"]
|
| 64 |
|
| 65 |
for i, message in enumerate(st.session_state.chat_history):
|
| 66 |
if i % 2 == 0:
|
| 67 |
+
st.write(" Usuario: " + message.content)
|
| 68 |
else:
|
| 69 |
st.write("🤖 ChatBot: " + message.content)
|
| 70 |
|
| 71 |
|
| 72 |
def main():
|
|
|
|
|
|
|
|
|
|
| 73 |
st.set_page_config(
|
| 74 |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
| 75 |
page_icon=":books:",
|
|
|
|
| 80 |
|
| 81 |
st.write(css, unsafe_allow_html=True)
|
| 82 |
|
| 83 |
+
|
|
|
|
| 84 |
if "conversation" not in st.session_state:
|
| 85 |
st.session_state.conversation = None
|
| 86 |
if "chat_history" not in st.session_state:
|
| 87 |
st.session_state.chat_history = None
|
| 88 |
|
| 89 |
+
|
| 90 |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
| 91 |
user_question = st.text_input("Ask a question about your documents:")
|
| 92 |
if user_question:
|
| 93 |
handle_userinput(user_question)
|
| 94 |
|
| 95 |
+
|
| 96 |
with st.sidebar:
|
| 97 |
st.subheader("Your documents")
|
| 98 |
pdf_docs = st.file_uploader(
|