Spaces:
Running
Running
| import re | |
| import gc | |
| from time import time_ns | |
| import random | |
| import numpy as np | |
| import torch | |
| from typing import Optional | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| CATGEGORY_OPTIONS = { | |
| 'SPONSOR': 'Sponsor', | |
| 'SELFPROMO': 'Self/unpaid promo', | |
| 'INTERACTION': 'Interaction reminder', | |
| } | |
| START_SEGMENT_TEMPLATE = 'START_{}_TOKEN' | |
| END_SEGMENT_TEMPLATE = 'END_{}_TOKEN' | |
| class CustomTokens(Enum): | |
| EXTRACT_SEGMENTS_PREFIX = 'EXTRACT_SEGMENTS: ' | |
| # Preprocessing tokens | |
| URL = 'URL_TOKEN' | |
| HYPHENATED_URL = 'HYPHENATED_URL_TOKEN' | |
| NUMBER_PERCENTAGE = 'NUMBER_PERCENTAGE_TOKEN' | |
| NUMBER = 'NUMBER_TOKEN' | |
| SHORT_HYPHENATED = 'SHORT_HYPHENATED_TOKEN' | |
| LONG_WORD = 'LONG_WORD_TOKEN' | |
| # Custom YouTube tokens | |
| MUSIC = '[Music]' | |
| APPLAUSE = '[Applause]' | |
| LAUGHTER = '[Laughter]' | |
| PROFANITY = 'PROFANITY_TOKEN' | |
| # Segment tokens | |
| NO_SEGMENT = 'NO_SEGMENT_TOKEN' | |
| START_SPONSOR = START_SEGMENT_TEMPLATE.format('SPONSOR') | |
| END_SPONSOR = END_SEGMENT_TEMPLATE.format('SPONSOR') | |
| START_SELFPROMO = START_SEGMENT_TEMPLATE.format('SELFPROMO') | |
| END_SELFPROMO = END_SEGMENT_TEMPLATE.format('SELFPROMO') | |
| START_INTERACTION = START_SEGMENT_TEMPLATE.format('INTERACTION') | |
| END_INTERACTION = END_SEGMENT_TEMPLATE.format('INTERACTION') | |
| BETWEEN_SEGMENTS = 'BETWEEN_SEGMENTS_TOKEN' | |
| def custom_tokens(cls): | |
| return [e.value for e in cls] | |
| def add_custom_tokens(cls, tokenizer): | |
| tokenizer.add_tokens(cls.custom_tokens()) | |
| class OutputArguments: | |
| output_dir: str = field( | |
| default='out', | |
| metadata={ | |
| 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.' | |
| }, | |
| ) | |
| checkpoint: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| 'help': 'Choose the checkpoint/model to train from or test with. Defaults to the latest checkpoint found in `output_dir`.' | |
| }, | |
| ) | |
| models_dir: str = field( | |
| default='models', | |
| metadata={ | |
| 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.' | |
| }, | |
| ) | |
| # classifier_dir: str = field( | |
| # default='out', | |
| # metadata={ | |
| # 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.' | |
| # }, | |
| # ) | |
| def seed_factory(): | |
| return time_ns() % (2**32 - 1) | |
| class GeneralArguments: | |
| seed: Optional[int] = field(default_factory=seed_factory, metadata={ | |
| 'help': 'Set seed for deterministic training and testing. By default, it uses the current time (results in essentially random results).' | |
| }) | |
| def __post_init__(self): | |
| random.seed(self.seed) | |
| np.random.seed(self.seed) | |
| torch.manual_seed(self.seed) | |
| torch.cuda.manual_seed_all(self.seed) | |
| def device(): | |
| return torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| def seconds_to_time(seconds, remove_leading_zeroes=False): | |
| fractional = round(seconds % 1, 3) | |
| fractional = '' if fractional == 0 else str(fractional)[1:] | |
| h, remainder = divmod(abs(int(seconds)), 3600) | |
| m, s = divmod(remainder, 60) | |
| hms = f'{h:02}:{m:02}:{s:02}' | |
| if remove_leading_zeroes: | |
| hms = re.sub(r'^0(?:0:0?)?', '', hms) | |
| return f"{'-' if seconds < 0 else ''}{hms}{fractional}" | |
| def reset(): | |
| torch.clear_autocast_cache() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| print(torch.cuda.memory_summary(device=None, abbreviated=False)) | |