|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from sklearn.svm import SVC |
|
|
from sklearn.preprocessing import StandardScaler |
|
|
|
|
|
|
|
|
data = { |
|
|
"5Y_Return": [14.0, 7.5, 13.2, 6.0, 15.0, 8.0, 12.0, 6.5, 10.5, 7.2], |
|
|
"Volatility": [8.0, 6.5, 7.8, 9.0, 7.0, 6.2, 7.1, 8.5, 6.8, 7.9], |
|
|
"Risk_Score": [2, 3, 2, 4, 1, 3, 2, 4, 2, 3], |
|
|
"Rating": ["Good", "Bad", "Good", "Bad", "Good", "Bad", "Good", "Bad", "Good", "Bad"] |
|
|
} |
|
|
df = pd.DataFrame(data) |
|
|
df["Label"] = df["Rating"].map({"Good": 1, "Bad": 0}) |
|
|
|
|
|
|
|
|
X = df[["5Y_Return", "Volatility", "Risk_Score"]] |
|
|
y = df["Label"] |
|
|
|
|
|
scaler = StandardScaler() |
|
|
X_scaled = scaler.fit_transform(X) |
|
|
|
|
|
model = SVC(kernel="linear", probability=True) |
|
|
model.fit(X_scaled, y) |
|
|
|
|
|
|
|
|
def classify_and_plot(return_5y, volatility, risk_score): |
|
|
|
|
|
input_data = [[return_5y, volatility, risk_score]] |
|
|
input_scaled = scaler.transform(input_data) |
|
|
prediction = model.predict(input_scaled)[0] |
|
|
confidence = model.predict_proba(input_scaled)[0][prediction] |
|
|
result = "Good Investment" if prediction == 1 else "Bad Investment" |
|
|
|
|
|
|
|
|
X_2d = df[["5Y_Return", "Volatility"]].values |
|
|
y_2d = df["Label"].values |
|
|
scaler_2d = StandardScaler() |
|
|
X_2d_scaled = scaler_2d.fit_transform(X_2d) |
|
|
|
|
|
model_2d = SVC(kernel="linear") |
|
|
model_2d.fit(X_2d_scaled, y_2d) |
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 5)) |
|
|
ax.scatter(X_2d_scaled[:, 0], X_2d_scaled[:, 1], c=y_2d, cmap="bwr", edgecolors="k", s=60) |
|
|
|
|
|
|
|
|
ax.scatter(model_2d.support_vectors_[:, 0], model_2d.support_vectors_[:, 1], |
|
|
s=150, facecolors='none', edgecolors='k', linewidths=1.5, label="Support Vectors") |
|
|
|
|
|
|
|
|
xlim = ax.get_xlim() |
|
|
ylim = ax.get_ylim() |
|
|
xx = np.linspace(xlim[0], xlim[1], 30) |
|
|
yy = np.linspace(ylim[0], ylim[1], 30) |
|
|
YY, XX = np.meshgrid(yy, xx) |
|
|
xy = np.vstack([XX.ravel(), YY.ravel()]).T |
|
|
Z = model_2d.decision_function(xy).reshape(XX.shape) |
|
|
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], |
|
|
alpha=0.7, linestyles=['--', '-', '--']) |
|
|
|
|
|
|
|
|
ax.set_title("SVM Decision Boundary (2 Features)") |
|
|
ax.set_xlabel("5Y Return (scaled)") |
|
|
ax.set_ylabel("Volatility (scaled)") |
|
|
ax.legend() |
|
|
ax.grid(True) |
|
|
|
|
|
|
|
|
plot_path = "/tmp/svm_plot.png" |
|
|
fig.savefig(plot_path) |
|
|
plt.close(fig) |
|
|
|
|
|
return f"{result} (Confidence: {confidence:.2f})", plot_path |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("## π§ SVM Classifier: Mutual Fund Recommendation") |
|
|
|
|
|
with gr.Row(): |
|
|
return_input = gr.Number(label="5-Year Return (%)", value=10.0) |
|
|
vol_input = gr.Number(label="Volatility (%)", value=7.0) |
|
|
risk_input = gr.Number(label="Risk Score (1=Low, 5=High)", value=3) |
|
|
|
|
|
classify_btn = gr.Button("Classify and Show Decision Boundary") |
|
|
output_label = gr.Textbox(label="Prediction") |
|
|
|
|
|
gr.Markdown("""### π Benchmark Guide |
|
|
**π΄ Blue Dots = Good Investments** |
|
|
**π΄ Red Dots = Bad Investments** |
|
|
**β« Solid Black Line = Decision Boundary** |
|
|
**β« Dashed Lines = Margins (distance to support vectors)** |
|
|
**β Large Hollow Dots = Support Vectors (key data points)** |
|
|
""") |
|
|
|
|
|
output_plot = gr.Image(label="SVM Decision Boundary") |
|
|
|
|
|
classify_btn.click( |
|
|
fn=classify_and_plot, |
|
|
inputs=[return_input, vol_input, risk_input], |
|
|
outputs=[output_label, output_plot] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|