File size: 5,659 Bytes
1273f5f
3bf8430
 
 
 
1273f5f
 
3bf8430
 
 
 
1273f5f
 
3bf8430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
title: Rlve Gym Environment Server
emoji: πŸ“‘
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
  - openenv
---

# Rlve Gym Environment

A simple test environment that echoes back messages. Perfect for testing the env APIs as well as demonstrating environment usage patterns.

## Quick Start

The simplest way to use the Rlve Gym environment is through the `RlveGymEnv` class:

```python
from RLVE_Gym import RlveGymAction, RlveGymEnv

try:
    # Create environment from Docker image
    RLVE_Gymenv = RlveGymEnv.from_docker_image("RLVE_Gym-env:latest")

    # Reset
    result = RLVE_Gymenv.reset()
    print(f"Reset: {result.observation.echoed_message}")

    # Send multiple messages
    messages = ["Hello, World!", "Testing echo", "Final message"]

    for msg in messages:
        result = RLVE_Gymenv.step(RlveGymAction(message=msg))
        print(f"Sent: '{msg}'")
        print(f"  β†’ Echoed: '{result.observation.echoed_message}'")
        print(f"  β†’ Length: {result.observation.message_length}")
        print(f"  β†’ Reward: {result.reward}")

finally:
    # Always clean up
    RLVE_Gymenv.close()
```

That's it! The `RlveGymEnv.from_docker_image()` method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call `close()`

## Building the Docker Image

Before using the environment, you need to build the Docker image:

```bash
# From project root
docker build -t RLVE_Gym-env:latest -f server/Dockerfile .
```

## Deploying to Hugging Face Spaces

You can easily deploy your OpenEnv environment to Hugging Face Spaces using the `openenv push` command:

```bash
# From the environment directory (where openenv.yaml is located)
openenv push

# Or specify options
openenv push --namespace my-org --private
```

The `openenv push` command will:
1. Validate that the directory is an OpenEnv environment (checks for `openenv.yaml`)
2. Prepare a custom build for Hugging Face Docker space (enables web interface)
3. Upload to Hugging Face (ensuring you're logged in)

### Prerequisites

- Authenticate with Hugging Face: The command will prompt for login if not already authenticated

### Options

- `--directory`, `-d`: Directory containing the OpenEnv environment (defaults to current directory)
- `--repo-id`, `-r`: Repository ID in format 'username/repo-name' (defaults to 'username/env-name' from openenv.yaml)
- `--base-image`, `-b`: Base Docker image to use (overrides Dockerfile FROM)
- `--private`: Deploy the space as private (default: public)

### Examples

```bash
# Push to your personal namespace (defaults to username/env-name from openenv.yaml)
openenv push

# Push to a specific repository
openenv push --repo-id my-org/my-env

# Push with a custom base image
openenv push --base-image ghcr.io/meta-pytorch/openenv-base:latest

# Push as a private space
openenv push --private

# Combine options
openenv push --repo-id my-org/my-env --base-image custom-base:latest --private
```

After deployment, your space will be available at:
`https://huggingface.co/spaces/<repo-id>`

The deployed space includes:
- **Web Interface** at `/web` - Interactive UI for exploring the environment
- **API Documentation** at `/docs` - Full OpenAPI/Swagger interface
- **Health Check** at `/health` - Container health monitoring

## Environment Details

### Action
**RlveGymAction**: Contains a single field
- `message` (str) - The message to echo back

### Observation
**RlveGymObservation**: Contains the echo response and metadata
- `echoed_message` (str) - The message echoed back
- `message_length` (int) - Length of the message
- `reward` (float) - Reward based on message length (length Γ— 0.1)
- `done` (bool) - Always False for echo environment
- `metadata` (dict) - Additional info like step count

### Reward
The reward is calculated as: `message_length Γ— 0.1`
- "Hi" β†’ reward: 0.2
- "Hello, World!" β†’ reward: 1.3
- Empty message β†’ reward: 0.0

## Advanced Usage

### Connecting to an Existing Server

If you already have a Rlve Gym environment server running, you can connect directly:

```python
from RLVE_Gym import RlveGymEnv

# Connect to existing server
RLVE_Gymenv = RlveGymEnv(base_url="<ENV_HTTP_URL_HERE>")

# Use as normal
result = RLVE_Gymenv.reset()
result = RLVE_Gymenv.step(RlveGymAction(message="Hello!"))
```

Note: When connecting to an existing server, `RLVE_Gymenv.close()` will NOT stop the server.

## Development & Testing

### Direct Environment Testing

Test the environment logic directly without starting the HTTP server:

```bash
# From the server directory
python3 server/RLVE_Gym_environment.py
```

This verifies that:
- Environment resets correctly
- Step executes actions properly
- State tracking works
- Rewards are calculated correctly

### Running Locally

Run the server locally for development:

```bash
uvicorn server.app:app --reload
```

## Project Structure

```
RLVE_Gym/
β”œβ”€β”€ __init__.py            # Module exports
β”œβ”€β”€ README.md              # This file
β”œβ”€β”€ openenv.yaml           # OpenEnv manifest
β”œβ”€β”€ pyproject.toml         # Project metadata and dependencies
β”œβ”€β”€ uv.lock                # Locked dependencies (generated)
β”œβ”€β”€ client.py              # RlveGymEnv client implementation
β”œβ”€β”€ models.py              # Action and Observation models
└── server/
    β”œβ”€β”€ __init__.py        # Server module exports
    β”œβ”€β”€ RLVE_Gym_environment.py  # Core environment logic
    β”œβ”€β”€ app.py             # FastAPI application
    └── Dockerfile         # Container image definition
```