Add front end
Browse files
app.py
CHANGED
|
@@ -1,3 +1,33 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
# Load the model and processor
|
| 6 |
+
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
|
| 7 |
+
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
|
| 8 |
+
|
| 9 |
+
# Function to transcribe the audio
|
| 10 |
+
def transcribe_audio(audio):
|
| 11 |
+
input_values = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_values
|
| 12 |
+
|
| 13 |
+
# Inference
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
logits = model(input_values).logits
|
| 16 |
+
|
| 17 |
+
# Decode the transcription
|
| 18 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 19 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 20 |
+
|
| 21 |
+
return transcription[0] # Since we're only handling one audio file
|
| 22 |
+
|
| 23 |
+
# Set up the Gradio interface
|
| 24 |
+
interface = gr.Interface(
|
| 25 |
+
fn=transcribe_audio,
|
| 26 |
+
inputs=gr.Audio(source="microphone", type="filepath"), # Accept audio files
|
| 27 |
+
outputs="text",
|
| 28 |
+
title="Chinese Audio Transcription",
|
| 29 |
+
description="Upload or record an audio file to transcribe it into Chinese."
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Launch the interface
|
| 33 |
+
interface.launch()
|